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* TDNN-LSTM O 33H O

LSTM & 33 Hz
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* TDNN-Attention
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* TDNN-Attention
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* IDNN-F
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* MMI — bMMI (boosted MMI)
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* LF-MMI (chain)
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* phone-level LM: i)llZ&&EphoneXtFERYIGN-gramBZ ZRIES 1ETY
« AREXEIPIINGIERLETEISsk B Lattice, FrlA;ZLattice-Free(LF)
« AREERINNEBEHCLGfst > HCP PEZRRIES1EH)

« DFED A ALatticeZE R(GMM-HMM/Z DNN-HMME 2))



P T

* TREERXILL

TDNN TDNN+Attention

dev 8.6 8.3
TED-LIUM test 8.9 8.7

eval 43.7 43.3
AMISDM 4.0 399 39.5

eval 21.4 21.1
AMI-IHM dev 21.4 21.1
* fullset/callhm/swbd

TDNN-LSTM+
TDNN-LSTM Attention

dev 8.3 8.0
TED-LIUM 8.5 8.2

eval 42 414
AMI-SDM dev 38.6 38.2

eval 21.1 20.5
AMITEM g 21.1 20.9
* fullset/callhm/swbd

Eval2000

Switchboard Params SWED Total RTO03 RTF
TDNN 19M 9.5 14.3 17.5 0.36
BLSTM 41M 92 13.7 16.0 1.77

TDNN-LSTM 40M 9.0 13.5 15.6 1.26
TDNN-F 23M 8.7 12.7 15.1 0.45

Table 3: Results (% WER) of the DNNs trained on the full 300 hour training set using different criteria.

Hub5 °00 Hub5 ’01
System SWB | CHE | Total | SWB | SWB2P3 | SWB-Cell | Total
GMM BMMI | 18.6 | 33.0 | 25.8 18.9 24.5 30.1 24.6
DNN CE 14.2 25.7 | 20.0 14.5 19.0 25.3 19.8
DNN MMI 12.9 24.6 18.8 13.3 17.8 23.7 18.4
DNN sMBR 12.6 24.1 18.4 13.0 17.7 22.9 18.0
DNN MPE 12.9 24.1 18.5 13.2 17.7 23.4 18.2
DNN BMMI 12.9 24.5 18.7 13.2 17.8 23.5 18.3

Table 4: Performance of LF-MMI on various LVCSR tasks with
different amount of training data, using TDNN acoustic models

. WER
Database | Size | —~p—CGE 5 MBR LE-MMI

AMI-IHM | 80hrs | 25.1 23.8 2241
AMI-SDM | 80hrs | 509 48.9 46.17
TED-LIUM | 118hrs | 12.1 11.3 11.2*
Switchboard | 300 hrs 18.2 16.9 15.5
Librispeech | 1000 hrs | 4.97 4.56 4.28
Fisher + SWBD | 2100 hrs | 15.4 14.5 13.3
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« X-vector: TIE AR IO=

C BAR B—BAREKIE SR — M 8
. SRETE 7T R R AT MG BT P

- GutE: HE. REE

Layer Layer context | Total context | Input x output
frame [t—2,t+2 5 120x512
frame2 | {t —2,t,1+ 2} 9 1536x512
frame3 {t—3,t,t+3} 15 1536x512
framed {t} 15 512x512
frame5 {t} 15 512x1500
stats pooling 0,T) T 15007"x3000
segment6 {0} T 3000x512
segment? {0} T 512x512
softmax {0} T 512xN

An Overview of Hybrid ASR

P(speakery | X1, X2, ..., X1), k=1,2, ...,
'y

softmax layer | (OO OOOO~0O
OCO00-O
x-vector — ()OO~
[ Statistics Pooling |
2 layers without | OO00-0O
time-delay _ OOOOO
[00000)
Bt}fﬁﬁegh ) OOOOO '
1 OO00-O]
| l

B2 x-vectorfMZ&zE+

N

softmax

segment-

segment’ | {avel]

segment6

frame5 _

frame4

| frame-

frame3 level

frame2

framel
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« X-vector: 1iIE AREO=
- RERNGEIR HWIEAZ DX
« WIEANIRBIR R LDARKYE + PLDAY 388

- IREEEMN. FuEEmE
« MUSANMEE ZE: babble music noise
* RIRS_NOISES;EMH ZE: reverb

e MELTFi-vectorfgLE
« ERIFEBNRFES P M ELR
« BURIERFIRFAREMELL Ti-vectorERR B
« EBAEARBUEERIRTE AR BIE B 4

An Overview of Hybrid ASR

P(speakery | X1, X2, ...y X7), k=1,2,...,N
'y

softmax layer O O O O O O O softmax |

| segment-
OO0O-0O segment’ " Jeyel
x-vector <~ OOOO segment6_

| Statistics Pooling |

2 layers without | O O O O = O frame5
time-delay _ O O O O O framod
[OO00-Off  sames - fome

level
3 layers with _ OOOOO 1 frame?2

time-delay
1 OO000O-Qf  framel |
| l

X1, X3, ees, XT
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EINA
BATIE R (TED_LIUM r33dE)

« WIE ARD

e x-vectorift FH200%4

o 200#EX-vectorE 3 MDNNAHIREL, ~HLDA

e i-vector5x-vectorE E R EZHEHEE S

« ROVEREES &%

o HMMALEBE (KRSEWISUE)
FPRIGeR: ANME. A0SR M
« Statistics Poolingi&INYE. FEZIMIFITE

d Speaker WER WER 4-gram | WER RNNLM
Modification | Dev | Test | Dev | Test | Dev Test
100 No 8.37 8‘3% 7.82 8.13 6.69 7.Q7
Yes 844 | 828 | 7.83 | 794 | 6.76 6.97
500 No 8 18 8.40 7.73 79‘3 6.49 6.94
Yes 829 | 836 | 7.714 | 7.89 | 648 6.78

K1 WIAAVIDERYSERG S5 RAT L

d Extraction WER WER 4-gram | WER RNNLM
Strategy Dev | Test | Dev Test Dev Test
100 LDA 852 | 848 | 7.87 | 8.05 | 6.69 7.15
no LDA 844 | 828 | 783 | 794 | 6.76 6.97
200 LDA 831 | 857 | 7.78 | 8.01 | 6.65 6.91
no LDA 829 | 836 | 7.714 | 7.89 | 6.48 6.78

®2 =58 DAY KR R

system WER WER 4-gram | WER RNNLM
Dev | Test | Dev | Test | Dev Test
i-vector 7.85 | 839 | 722 | 7.76 | 6.20 6.95
X-vector 829 | 836 | 7.74 | 7.89 | 6.48 6.78
feature fusion | 8.10 | 836 | 746 | 7.80 | 6.40 6.90
system fusion | 7.70 | 828 | 7.19 | 7.71 | 6.06 6.71

=3 i-vector5x-vectorfygi &
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Time-Warping
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Masking
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* XARTRIE T A WRREHAF

» EASALRENIGNESRE, NIRRT RKHEZRE (Perplexity,

1
PPL(W) = P(W1W2W3 WN)_N
1

N N
PPL(W) = 1_[ P(wilwiwy - Wi—1)]
i=1

1

2gram: PPL(W) = [[TV, P(wi|w;_)]| ¥

» RBERENRINCARAF, S RERERTE—EENT
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* XATRIETTEA: THX X NE
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* XAJHIETTE: doc2vec
* Distributed Memory Model
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EEl ke

* WNfar{E A ik

a7

Je YR

7

g il

BEJ BREEEE EEEEERE
J5 46 I 25 24 ME3 429.30
HEXS AZ A I 6 ) i KN4 1632.75
PITE o E i 3 KN4 598.42
T 40 B 43 S VI GRAE = B 5 fh{E ME3 409.11

H%:: /\”Jvllé}'ﬁlm = 1REY
FIRFK IR ERNEIE H=REE | XM E | TF-IDFE | Doc2vecsk
FARITEL 377H 207 107 3075 407
BEStEf ME3 KN4 KN4 KN4 KN4
429.30

S,

PRI WER = 477y | 199443 1632.75 2021.46 2012.21
FREERE 0.825 0.054 0.017 0.042 0.062
HBIEBIHE PPL = 387.32, WER = 46.8 %
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* N-Best/Lattice Rescoring
* acoustic score + language model score + graph cost

« EEEE Igraph costiNE W, RIEMUESRE DA

« BTSSR
* large n-gram model
* RNNLM

* Transformer-LM
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R R T

» BIHARZER T ROVEREE

AM-1

ASR-system-1

ASR-system-2

ASR-system-n

W1

W2

W3

posterior—l\

posterior-2 (weighted)
Average
posterior-n/
\
> alignment Voting
IR/
_ BP0
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* Lattice: Lattice Combination + MBR Decoding

(10) #4321, 27,-101. 00,0. 122

(2)</s>[113.60,-13.00,0. 122
(23) #1451 277. 09, -46. 00,0. 122

(35) % K |224. 66,-93.00,0. 122

(34)<s>|-2. 96,0. 00, 1. 000

{13) 4R 9F [ 178. 56, -53. 00, 0. 107
(21) % |64. 28,-53. 00, 0. 878

(2)<¢/s>|21. 78, -7. 00,0, 107

(22) 4K 48633, 41, -98. 00,0. 224
(8) E 099 # #7 |779. 21, -96. 00,0. 654

(1)¢/s>]113.60,-17.00,0. 117
(10)112
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