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An Overview of Voice Cloning
Transfer Learning, Representation Learning and Meta-Learning
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Voice Cloning (语音克隆)

• Few-Shot TTS (少样本语音合成) / Personalized TTS (个性化语音合成)

• 问题背景：使用较少样本合成目标说话人的声音

• 目标说话人的语音合成方法

• 样本数量很多时 → 单说话人 TTS

• 样本数量较多时 → 多说话人 TTS

• 样本数据很少时 → 语音克隆

• Voice Cloning 模型的评价

• 语音效果 MOS / SMOS

• 语音质量/自然度

• 说话人音色相似度 Timbre

• 说话人风格 Style / 韵律 Prosody 相似度

• 成本/代价：

• 资源消耗（单说话人的模型参数量）

• 时间消耗（获得模型的快慢）

Background

• 引入模型的两种方式

• Speaker embedding table: global embedding

• Speaker encoder: utterance-level embedding

• 推理时的两种输入

• Speaker ID + 音素序列

• Speaker 参考音频 + 音素序列
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两大类思想：            Transfer Learning                         Representation Learning

Arik, Sercan, et al. "Neural voice cloning with a few samples." Advances in neural information processing systems 31 (2018).
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Transfer Learning

基础方法：Speaker Adaptation

影响因素的实验性分析

• 样本数量：1, 2, 3, 5, 10, 20, 50, 100

• 微调参数量：spk embedding / 整个模型

• 模型迭代次数 (iteration)

Arik, Sercan, et al. "Neural voice cloning with a few samples." Advances in neural information processing systems 31 (2018).

纵坐标：使用测试集的 (新增) 说话人音频训练说话

人分类器后，语音克隆合成的语音的分类准确率。
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Transfer Learning

改进版方法：Speaker Conditioned Adaptation

• Speaker adaptation：微调参数量大，个性化模型参数多，速度慢

• Speaker conditioned adaptation ：尽可能降低微调参数量，同时合成效果尽量不受影响

• CLN 的思想：增加以说话人信息作为输入 (condition) 的模块，只微调与说话人有关的参数

Conditional Layer Normalization (CLN)

Chen, Mingjian, et al. "AdaSpeech: Adaptive Text to Speech for Custom Voice." International Conference on Learning Representations. 2020.
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Transfer Learning

改进版方法：Speaker Conditioned Adaptation

增强版：增加更多与说话人相关的模块

• Variance Adaptor 加入 Conditional Layer Norm

• 作用：引入说话人信息，增加 fine-tune 时可变参数量

• 目标：模型 adaptation 后，语速/韵律上与目标说话人更接近

Yi, Yuanhao, et al. "Prosodyspeech: Towards Advanced Prosody Model for Neural Text-to-Speech." ICASSP 2022.
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Representation Learning

基于 reference audio 参考音频获取 speaker embedding

思想：以说话人分类任务为指导，将神经网络隐含层向量作为说话人的表征

Speaker Encoding

d-vector x-vector

Jia, Ye, et al. "Transfer learning from speaker verification to multispeaker text-to-speech synthesis." Advances in neural information processing systems 31 (2018).
Cooper, Erica, et al. "Zero-shot multi-speaker text-to-speech with state-of-the-art neural speaker embeddings." IEEE ICASSP. IEEE, 2020.

Speaker Encoder 的两种使用方法

• 预训练说话人识别模型：特征提取器，给定音频，

提取网络某一隐层信息作为说话人特征向量

• 多任务学习：说话人识别模型结构，增加额外的

说话人分类任务，与 TTS 模型联合训练
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Representation Learning

Speaker Encoding

Xue, Jinlong, et al. "ECAPA-TDNN for Multi-speaker Text-to-speech Synthesis." arXiv preprint arXiv:2203.10473 (2022).

Squeeze and excitation：在 channel 维度

增加 attention，强化重要通道的特征

基于 reference audio 参考音频获取 speaker embedding

思想：以说话人分类任务为指导，将神经网络隐含层向量作为说话人的表征

Res2Net模块的输出包含不同感受野大小的

组合，该结构有利于提取全局和本地信息。
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Representation Learning

结论一：Speaker Encoding 与 Speaker Identification 的相关性

• Speaker Identification : 相同后端分类器条件下，不同网络结构的效果

• ecapa > x-vector > d-vector > i-vector

• 用于多说话人 TTS 的 Speaker Encoder， 指标上有类似的规律

结论

• 之前 Speaker Encoding 不如 Speaker Embedding Table 的效果

• 但 ECAPA 在集内说话人上达到了更好的 SMOS

• 表征能力更强的 speaker embedding，在集外新说话人的泛化能力越好

对比实验

• reconstruct：GT mel + HiFi-GAN

• baseline：使用 speaker embedding table 

• x-vector：FastSpeech2 + 预训练 x-vector Encoder

• ecapa： FastSpeech2 + 预训练 ECAPA-TDNN Encoder

Xue, Jinlong, et al. "ECAPA-TDNN for Multi-speaker Text-to-speech Synthesis." arXiv preprint arXiv:2203.10473 (2022).
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Representation Learning

结论二：Speaker Encoding 与 Speaker Adaptation 的优缺点对比

语音克隆方法 Speaker Adaptation Speaker Encoding

优势 微调后新增说话人的合成效果不错
不需要额外微调模型(微调效果反而可能更不好)，

只需要新增说话人的参考音频

不足
微调整个模型时效果最好，但每个说话人一套模型，资源要求高

微调时模型迭代次数成千上万次才能达到不错的效果，耗时较长

泛化能力差，对训练集说话人的丰富程度要求高

新增说话人和训练集差异较大时，容易出现 mismatch 的问题

Arik, Sercan, et al. "Neural voice cloning with a few samples." Advances in neural information processing systems 31 (2018).
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Representation Learning

结论三：Speaker Encoding 与 Speaker Adaptation 相辅相成

• Speaker Encoding 提供了音频级别丰富的说话人音色/风格层面的信息

• 在 Speaker Adaptation 的模型中增加 Speaker Encoding 提供高维信息

• 扩充说话人表征的来源 (Speaker-ID 和音频都作为输入)

• 微调时只更新和说话人更直接相关的参数，更快更省地达到更好的效果

Chien, Chung-Ming, et al. “Investigating on incorporating pretrained and learnable speaker representations for multi-speaker multi-style text-to-speech.” IEEE ICASSP, 2021.
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Representation Learning

从 Speaker Encoder 到 Style Encoder

StyleSpeech=Mel-Style Encoder + Speaker-Adaptive LayerNorm (SALN)

对比实验

• GT mel + Vocoder: GT 特征 + MelGAN 声码器

• Multi-speaker FS2: FastSpeech2 (no SALN)

• Multi-speaker FS2+d-vector: FastSpeech2 + Speaker Encoder

• StyleSpeech: Mel-Style Encoder + SALN

Min, Dongchan, et al. "Meta-stylespeech: Multi-speaker adaptive text-to-speech generation." International Conference on Machine Learning. PMLR, 2021.
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Representation Learning

从 Speaker Encoder 到 Style Encoder

Global Style Tokens (GST)

Conv2d

BatchNorm2d

GRU

×6

Input Mel

Reference Embedding

Reference Encoder

Wang, Yuxuan, et al. "Style tokens: Unsupervised style modeling, control and transfer in end-to-end speech synthesis." ICML. PMLR, 2018.
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Representation Learning

从 Speaker Encoder 到 Style Encoder

Hierarchical GST
• 第一层 GST： Speaker-ID 对应的音色

• 第二/三层 GST： 说话人风格或者情感变化

An, Xiaochun, et al. “Learning hierarchical representations for expressive speaking style in end-to-end speech synthesis.”  IEEE ASRU, 2019.
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Representation Learning

从 Speaker Encoder 到 Style Encoder

Multi-Scale GST

Lei, Shun, et al. “Towards Expressive Speaking Style Modelling with Hierarchical Context Information for Mandarin Speech Synthesis.” ICASSP IEEE, 2022.
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Representation Learning

总结一：Speaker Encoder 和 Style Encoder 的多角度对比

1. 建模目的

• 相同点：utterance 级别的表征学习，embedding 作为模型的 conditional 输入

• Speaker Encoder 更强调说话人音色属性，但不排除糅合了说话人的音色/风格等多方面信息

• Style Encoder 更强调说话人的风格属性，但在 Voice Cloning 任务上也可以作为说话人的整体表征

2. 训练方式

• Style Encoder 和声学模型联合训练时，没有额外的损失函数，监督信息完全来自声学特征预测的目标

• Speaker Encoder 和声学模型联合训练时，需要增加额外的说话人分类损失函数，进行多任务学习

3. 模型结构设计

CNN(TDNN)、RNN
Tricks: Residual、Squeeze and Excitation (SE)

average pooling (mel-style encoder), statistics pooling (x-vector), 
attentive statistics pooling (ecapa-tdnn), weighted embedding (GST)
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Representation Learning

总结二：GST 作为 Speaker Encoder (说话人分解)

• 将说话人用一组基向量张成的空间来建模，基向量加权后作为说话人表征向量

• 将 GST 的 token 视为一组说话人基底向量，输入的 speaker embedding 被分解为

基向量的线性加权，权重来自 speaker embedding 和基底向量的 attention 计算

Wu, Yihan, et al. “Adaspeech 4: Adaptive text to speech in zero-shot scenarios.”  Interspeech 2022.
Xiao, Ruitong, Haitong Zhang, and Yue Lin. “DGC-vector: A new speaker embedding for zero-shot voice conversion.” ICASSP IEEE, 2022.

正交基限制
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Meta-TTS: Meta-Learning for Few-Shot 

Speaker Adaptive Text-to-Speech
TASLP 2022



An Overview of Voice Cloning 20

Meta-Learning

Meta-Learning 元学习

• 思想：学习如何学习，learning to learn

• 不是学习一个直接用于预测的数学模型

• 而是学习“如何更快更好地学习一个数学模型”

问题设定

1. 数据量少：少样本学习、语音克隆

2. 学习更快：Speaker Adaptation 迭代次数多，希望减少迭代次数

3. 泛化性更好：提高新说话人上的合成效果

授人以鱼不如授人以渔 

传授给人已有的知识

不如传授给人学习知识的方法

• 小任务：模仿 apple、banana发音来学习；对于新单词 strawberry，必须听到发音才能学会

• 元学习：目标仍然是学习 strawberry 的发音，但元学习不强调特定某个单词的学习目标，而是学习音

标的发音，之后只要根据音标很快就能掌握新单词的发音

• 不限于一种语言，总结出国际音标 IPA，在 IPA 基础上加以变通，可以更快学会新语言的发音
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MAML: Model-Agnostic Meta-Learning

Model Agnostic：模型无关的/模型不可知的、不对模型进行任何假设

核心目标：更好的模型初始化权重，学习快速 Adaptation 到其他 task 的能力

基础概念：

MAML: 模型无关的元学习

专业名词 说明

任务：在 C1-C10 上预训练模型，再在T1-T5上微调得到目标任务的模型

Base-Learner 图像分类任务：对标签未知的图片在 T1-T5 上进行分类 (真正的目标)

Meta-Learner 基于现有数据，元学习一个 base 模型 (预训练得到初始化权重)

Meta-Train Classes C1-C10：10 个类别，每个类别 30 张图片，共 300 张图片

Meta-test Classes T1-T5：5 个类别，每个类别 20 张图片，共 100 张图片

N-way K-shot N 表示类别的个数，K 表示每个类别的样本数

5-way 10-shot

5-way：预训练/Meta-train 阶段，从 Meta-train 数据 C1-C10 10个类别中，随机选择 5 类，用这 5 类的 

K-shot 数据作为一次分类任务 T；

10-shot：每个类别选择 10 个样本作为任务 T 的训练集，剩余样本作为任务 T 的测试集

训练集称为任务 T 的 support set, 测试集称为任务 T 的 query set

Task (meta-task) 每个 N-way K-shot 的分类任务即为 meta-task
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MAML: Model-Agnostic Meta-Learning

MAML: 模型无关的元学习

MAML 的训练数据

• MAML 每个 N-way K-shot 的任务 (meta-task)，相当于普通深度学习概念下的一个样本

• MAML 的 batch 是由一组 task (每个 task 都有 support set 和 query set) 构成的

MAML 的预训练

4-7: 对于每个 task，复制模型得到副本，进行内层优化及参数更新

5: N 类每个类别 K 个 support 样本，基于 N×K 个 support 样本计算梯度

6: 基于上一步的梯度结果，更新每个副本模型的参数

8: Meta-Learning 的核心步骤，称为 meta-update

• Loss 是在是各 task 的 query set 用相应的更新后的副本模型上计算得到，梯

度下降更新参数作用于原始的预训练模型上

MAML 的微调

• 预训练的模型参数作为初始参数

• 理论上只有一个 K-shot 的 task，没有 query set，所以只有内部优化：使用 

task 的 support set 微调模型
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Meta-TTS

Speaker Adaptation + Meta-Learning

• 出发点：Speaker Adaptation 效果好，但需要多次迭代，时间和计算资源消耗高，难以满足实际落地需要

• Meta-Learning 解决的问题 / 优势：Fast Adaptation，模型微调更高效

• Meta-TTS = Speaker Adaptation + Meta-Learning，优势互补，更快实现高质量的语音克隆

Meta-TTS 的修改

• Meta-learning 内层优化时默认更新全部参数

• Meta-TTS 内层优化：只更新 speaker 相关的参数，与 finetune 时操作一致

• Meta-TTS 外层优化：更新模型的全部参数
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Meta-TTS

Meta-TTS 的实验设计

论文以 5-shot Voice Cloning 为例

• Meta-train：LibriTTS (train-clean-100)， 247 个说话人，54 小时音频

• Meta-test：LibriTTS 30 个其他说话人；VCTK 80 个说话人，每个说话人 1 个 meta-task

• 每个 meta-task：support set = 5，query set = 5

• support set 学习该说话人的特性，微调声学模型

• query set 预测该说话人的语音特征

• support 和 query 样本来自同一个说话人

• 先从 Meta-train 中随机选择一个说话人

• 再从说话人的样本中，随机选择 5 + 5 = 10 条音频作为 task 的 support / query set

• 每个 batch 8 个 task，实际有 8 × (5 + 5) = 80 条音频；baseline 的 speaker adaptation 同样设置 batch_size=80

• 声码器使用 MelGAN
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Meta-TTS

Meta-TTS 的实验细节

LibriTTS VCTK
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Summary

总结

1. Speaker Encoder / Style Encoder / Speaker Adaptation 的组合

2. GST 结构的尝试

• 基于 GST 的说话人空间建模，将输入说话人信息分解为基向量的自动加权表征

• 不同结构的尝试：Hierarchical GST、Multi-Scale GST

3. MAML 元学习应用于模型的预训练

扩展

1. 模型的快速个性化适应 (语音识别/口语评测)

2. GST 变体用于音频特征的提取或者 embedding 的进一步分解
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谢 谢！
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Q & A

An, Xiaochun, et al. “Learning hierarchical representations for expressive speaking style in end-to-end speech synthesis.”  IEEE ASRU, 2019.

Hierarchical GST

• 动机：对于很多说话人、每个说话人风格多样的语音数据，论文希望通过多层 GST，将说话人的基础信息(音色)和说话人的风格信息「解耦」

• 在说话人、风格甚至情感这些不同的层次上，用不共享的 token embedding 来建模，而不希望只用一层 token 个数很多的 GST 来表示。

关于图中两个残差具体如何实现的，论文没有任何细节表述，但是论文给出的动机是：the residuals can increase the style information 

for decomposition，残差能够给深层GST的细粒度风格分解补充一些风格信息。
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