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+ Interspeech 2022: RetrieverTTS: Modeling Decomposed Factors for Text-Based Speech Insertion
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Figure 1: Model architecture.
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CPC features F

RetrieverTTS

requires whole sentence generation. We also find that our sys-
tem’s SMOS score largely outperforms the state-of-the-art zero-
shot voice adaptive TTS method, which leverages an explicit
speaker-related meta-learning objective. This indicates that our
system is powerful enough to handle the personalized TTS task,
even though our design does not fully aim at this goal.
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« ICLR 2022: Retriever: Learning Content-Style Representation as a Token-Level Bipartite Graph
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« ICLR 2022: Retriever: Learning Content-Style Representation as a Token-Level Bipartite Graph
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« Interspeech 2022: Content-Dependent Fine-Grained Speaker Embedding for Zero-Shot Speaker Adaptation in Text-to-Speech Synthesis
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Reference mel

Metric | Model seen speakers unseen speakers
GSE 3.50+0.16 3.56 +£0.12
MOS CLS 3.5614+0.14 3.53+£0.11
Attentron* 3.63+0.16 3.57 £0.13
CDFSE 3.59+0.17 3.54+0.12
GSE 3.89+0.14 3.08 +0.14
SMOS CLS 3.79 £ 0.16 3.124+0.14
Attentron*  4.04 £ 0.17 3.29 +£0.13
CDFSE 4.11 +£0.15 3.51+0.14




« ICML 2019: Parameter-Efficient Transfer Learning for NLP
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« ICASSP 2023: Residual Adapters for Few-Shot Text-to-Speech Speaker Adaptation
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« ICASSP 2023: Adapter-Based Extension of Multi-Speaker Text-to-Speech Model for New Speakers

o

I Adapter BY)

3k

18X 2: Adapter-Based Extension of Multi-Speaker Text-to-Speech Model for New Speakers

Target Mel-Spectrogram y

Predict Mel-Spectrogram y

Mel Decoder (FFTs) O]
[©@000C000000J]
d MSE &
OO®] «+—-—-— [@OO——® p

Duration Predictor ]

)

Phoneme Encoder (FFTs)

([ @]

g

Phoneme x

14

@—000] «=~

[ Pitch Predictor @]

______________________

Speaker
Encoder

Speaker ID

_____________________

\

(a) Multi-speaker FastPitch
Voice Cloning Advanced Methods

I

-

~
Add & CLN

ConvlD

Add & CLN

Multi-Head
Attention

HO) :

1

\

y

(b) FFT Block

\

Layer
Normalization

scale

X —mean
scale X ———— + bias
var

X bias

J

(d) CLN

l

P— | N
ConvlD

(c) Predictor

SE final
g P M)
lv
SE,
s “
Multi-Head Attention
Q K V
\ t 4 t
SE
l I_| 1

~ ™
Style
Rcference} [Tokens
Encoder
L 0000

Emb
Table

1080),

o k]

(e) Speaker Encoder



« ICASSP 2023: Adapter-Based Extension of Multi-Speaker Text-to-Speech Model for New Speakers
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18X 2: Adapter-Based Extension of Multi-Speaker Text-to-Speech Model for New Speakers
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« ICASSP 2023: Adapter-Based Extension of Multi-Speaker Text-to-Speech Model for New Speakers
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« ICASSP 2023: Adapter-Based Extension of Multi-Speaker Text-to-Speech Model for New Speakers
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18X 2: Adapter-Based Extension of Multi-Speaker Text-to-Speech Model for New Speakers
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Z—HEZR ™ RY Adapter RRZR{K Method | SECST CFSD| MSEp| MSEp | | Params
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( | h BitFit | 0.452 56.4 71.0 19.1 22M
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« ACL 2021: Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks
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« NeurlPS 2022: Scaling & Shifting Your Features: A New Baseline for Efficient Model Tuning
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