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Personalized
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Semantic Tokenizer: w2v-BERT
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Semantic Tokenizer: w2v-BERT
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Semantic Tokenizer: w2v-BERT
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Acoustic Tokenizer: SoundStream
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Acoustic Tokenizer: SoundStream
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Acoustic Tokenizer: SoundStream
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Acoustic Tokenizer: SoundStream
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Acoustic Tokenizer: Encodec (VALL-E)
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Figure 1: SPEAR-TTS. The first stage S; (“reading”) maps tokenized text to semantic tokens. The second stage
Sy (“speaking”) maps semantic tokens to acoustic tokens. Acoustic tokens are decoded to audio waveforms.

wav2vec-Bert FFIREUE X token

- BYARBIYER, ERINAES
SoundStream IZEVRIE RS token
- EKIATREE, ERLOEEES

1. #8EEF VALL-E BN AZRIES token, SPEAR-TTS LA
1B X token {EAIEMHIE, PHET EARMER

2. 1BX token — FEZ token FUEIRIIEAHE pair FE,
REELIRTES, BET7XSEAESK

3. BMERESEKRTERER, EIt ST MERATLIBRRE
AR IR, S2 MEBET Prompt I=HIGIEENSE

SPEAR-TTS: Speak, Read and Prompt 22



it 3E—: BART/TS Fii)llgk

#EE T, Transformer (Encoder-Decoder)
Transformer ¥t pair #IEEERE, MREBRNSIESEIEIS?

Smallparallel <speech, transcript> BathranSIatlon <speech, synth. transcript> Large synthetlc
. N : - h ————————— ¢ s T = parallel text-speech
F—: Fullsk : te);taf:siic 5 B Enc | Dec : dataset ?
. o | ....................... It """"""""" |.
- A BIANE (corrupted) HHEN token F5 e | - |
<speech, -» <synth. transcript, speech>
A o SEY b Tl e <orig. transcript, speech>
- i ESCAYIENX token FFA _—
Large : Pretraining Finetuning
* E&ﬂ;: Bjﬁj:ﬂlﬁ)\/ﬂﬂ” B/%/maSk _/l\EEg/l\ tOken sz‘;::s-gtnly <corrupt(speech), speech> ‘IP Enc DBC ] 51 I Enc | Dec ]
Eﬁ:—,‘j}: 1 //I\E ZIK-iE-% pair &}Eﬂi{ﬂﬁ -----------------------------------------------------------------------------------------------------------
frozen —— training

WA XA, i iBXES

ElE Encoder ;£Z&24F0 Decoder i Cross-Attention B934

1%E Encoder i £E&#0 Cross-Attention BUBXE2{

SPEAR-TTS: Speak, Read and Prompt

<input, target>
trained -------- inference

23



#EE T, Transformer (Encoder-Decoder)
Transformer Xt pair R EE:KE, MRBENMUEEREIIS?

ik B Z=E—": Back-Translation
- 8. [FEFRIE pair #3814k ASREE, LR EANESHITIRE!

. FE— FE—PIZEY T5 28, (EF pair FdE, BMARENFY, BHBUIXA
«  FETH: ERE Encoder 2%, RE Decoder %1 (HHH5E—" ASR 1REY)

o Backtranslation R
Small pal'a||8| : <speech, transcript <speech, synth. transcript> Large synthetlc :
i text-speech | P * parallel text-speech |
{  dataset ‘B Enc dataset
s T 1 ...................... R
<speech, > i <synth. transcript, speech>
e msmssmsosseseoceooooooodd <orig. transcript, speech>
: Large : ! Pretraining Finetuning
i speech-only ' @ v ) @ 1 1
dataset : <corrupt(speech), speech> P E :81 - Dec
frozen ————— training dinput, target>
@» trained - ----—--—> inference '

SPEAR-TTS: Speak, Read and Prompt

24



12X tokenHAEEHEAEZHEE,

e GRIE SIS ®?

AudioLM gy848.:
SoundStream BY RVQ BT o IEEMN, FZ token EHHIEEEEE—ERIRREHS
BIETA (Q) EWEE (FBRUEE(ES, coarse quantizer) FIRIKEIEARHE. REINEZFLBIENERER
FTHIE(MEE (BRIEE(ES, fine quantizer) BIETFREANATER

Semantic
modeling

Coarse
acoustic modeling

Fine
acoustic modeling

—  AudiolLM

Semantic tokens

BEEFUUES Token, SRIES

Semantic tokens

Coarse acoustic tokens
(from layers 1:Q’' of the RVQ)

REEATE (RE)

[ SoundStream Decoder ]

Coarse acoustic tokens
(from layers 1:Q’ of the RVQ)

Fine acoustic tokens
(from layers Q'+1:Q of the RVQ)

SPEAR-TTS: Speak, Read and Prompt



SPEAR-TTS

S2 (FMER) : iIEX Token — &=% Token

[A)RAIZE
- BE—BNES/EIMEN prompt, AEREEHIEIR
«  tBJZIEN token A z,

° t JZ7lE = tOken NA vi i=1:21---r AudioLM
B ZlIE= QM vt ( Q eoe [ (semantic ) ee e
. ) modeling)
AUdiOLM Ey:iiﬁiﬁ Past semantic tokens Future semantic tokens
$—F: BYiEE
Generated semantic tokens Future coarse acoustic tokens
AR YA
p( tl <t) % 8 AudioLM r >
E¥: BREREIR © 00000 ©® 00 0 [ (coarseacoustic C) ® © @ 00 00 000
. I A modeling)
Bﬁﬁﬁ:fﬁ@ﬁp(yﬂz, yz,Ql, yfq), g<Q', Hrp: Past coarse acoustic tokens

o RTE—MEREBINEEIEN token FF;
o Yy VRRZENG, S1Q MANERNBNAES token FF, HEBEMRH (flatten)
o yURTYBINZIT, #lg— 1(g < Q) MBI token FFI, EHHTRIT.
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SPEAR-TTS

S2 (FMER) : iIEX Token — &=% Token
Generated coarse acoustic tokens Generated fine acoustic tokens

BRI — AudiolM -
CAEY token 7 eseettem e T
t BIZIEZ token (MBI yL (i=1,2,...Q)
reshape
AudiolM =%k °° : °°
cococe ® Q >

B RIS °ocoo

MER=TEMHE B 238 B A token EHTEER, FHQ TENEEM IR token FERFMHTMAN, X
p(1y=?,y=% y ), Q' < q < QiTIRME, Heh:

® nyliﬂ__\EﬁQl/l\i{tggmﬁg"] token Fi’»_ﬂ, 1%%5%&%’
o YURRZAINZ, BQ +1FBQMBME (—HQIMEMAR) WEM token B, HERFH;
o Y 'RIHAINZT, flg— 1(Q' < ¢ < Q)NEMEBM token FF, HERF.
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IS
E—&KEINE N AEEMMEZHER, DBEA prompt FIBIRES

- BN
-  prompt BHEX token (w2v-BERT)
—s = Model input
- BtREERNENX token (w2v-BERT) , A
-  Prompt BYE% token (SoundStream)
- FONBER: Promptedgeneraton B @ 0 @ @ @ f‘> s'ig‘é":i:r;:ﬁ:}l::ic L> 0 |
- BIREERIEZ token Ou;’put

HIEIE
- BinESHNENX token 2fFEAFE—NERIINA — iEX token =EFHNSRIRY
.  HIFNESES token F5l, (R SoundStream BURERDSELRRIESS
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SoundStream
YIIEERE: Libri-Light (60k /\eT)
«  EUREEER: 16 kHz
PERAF(EEL: 32013
- RVQE#H: 3 E
BHF token N4 50 x 3 =150
« 5= codebook XK/\: 1024 (10bit)
ErigsR: 1500 bps

%—MEz Text — Semantic Token
T5 Fi)l|1Z%+ Back-Translation+{3iE
- JEEER: Libri-Light (60k /)\At)
- 1RBUEND: T5-large
«  Back-Translation: Libri-TTS (550 /Mg, Fohm®)
© EEEE: LISpeech BIEA (24 /NAT)

w2v-BERT

IIIZEEE: Libri-Light (60k /)\eT)
- EICRIEFER: 16 kHz

PERIF(EEL: 64013

=7 token ML 25 N

embedding HHEVIE: MLM IBRE 7 B
+  k-means BB3ENEL: 512 (9 bit)

EbiFER: 25x9=225 bps

Embed. dim. FFN dim. Head dim. # heads

T5-small 256 512 64 6
T5-base 768 2048 64 12
T5-large 1024 2816 64 16

Table 9: Architecture details. We report details for
T5-small, T5-base, and T5-large layers. The number of
layers used is defined by a grid search (see Section 7).
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SE_FE’: Semantic Token — Acoustic Token
. JIZEER: Libri-Light (60k /)\it)
- HERIEEK: 12 2 Decoder-Only Transformer

. head=12,d = 64, FFN & 2048

+ FastSpeech2 + HiFi-GAN

« VALL-E

V&S

« LibriSpeech test-clean 2700 %

VRN

- CER: FIMrEpiE SRR

- EHE—HME: GIESS prompt BTE—MRIE ARG
« MOS: 1-5

Table 4: Comparing voice preservation with base-
lines (cosine similarity). Results for YourTTS and
VALL-E are taken from (Wang et al., 2023, Table 2).

Model Parallel training data  Cosine similarity
YourTTS ~ 600 h 0.34
VALL-E 60,000 h 0.58
SPEAR-TTS 15 min 0.56

Table 6: Mean Opinion Score (MOS) evaluation for
prompted generation. Prompts for both systems and
samples for VALL-E are taken from the demo page of
VALL-E. = indicates 95% CI obtained by bootstrap.

System VALL-E SPEAR-TTS (15 min)
MOS 3.3510.12 4.7510.06

SPEAR-TTS: Speak, Read and Prompt
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Table 1: Intelligibility of SPEAR-TTS and our baselines, depending on the training scenario and the amount
of parallel data available from LJSpeech. We measure CER (%, lower is better) on LibriSpeech test-clean. +
indicates 95% CI obtained by bootstrap.“x” indicates models that produce unintelligible speech.

Parallel training data

FastSpeech2-LR

Training

from scratch (a)

Backtranslation

from scratch (c) pretraining (d)

24h
12h
3h
2h
1h
30 min
15 min

1.9910.20

2521095
2744097
3.1840.08
4904034

3.671021
4311028
2011074
24.7 011

X

X

X

SPEAR-TTS
Pretraining (b)

2.38:|:D,13 2-26:I:0.14
2541014 2.27+0.14
3.07:|:g_15 2-21:I:0.12
3-73:|:D.17 2-22:I:0.13
5.5119_21 2-23t0.13
21 -3:|:D.43 2-52:|:(]'.15

X 2.88+0.19

2.0610.12
2.03+0.12
2.010.12
2.090.12
2.1640.13
2.2040.19
22140190

Table 5: Mean Opinion Score (MOS) evaluation. All compared systems are trained on subsets of LISpeech (Ito
and Johnson, 2017). + indicates 95% CI obtained by bootstrap.

Parallel training data

15 min

FastSpeech2-LR

lh

24 h

SPEAR-TTS Ground-truth

15 min

MOS

1.7240.04

2.08.0.04

2114004

4.96..0.02

4.9240.04
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Semantic Token / Acoustic Token XfEE
o MEEMBIRIT

- BIRREEIANE
* =5 LX;I%ﬁ%%/E\' VALL-E =Y Libri-Light 60k
« ANMEAHBMEIE, MQ-TTS VALL-E X B+ Libri-Light + WenetSpeech 60k+10k
BN IR THE SRR BAR Y LR — "
N . \ aturalSpeech2 34 MLS-en 44k
« BARTTS AR EB HEE ChatGPT HIEEF
¢ REGREXT TTS F5 KSR AT MQ-TTS s GigaSpeech T
N N . N - SoundStorm F:g v BE 100k
XA/ BRI SIS G — R -

* SpeechGPT
* VQ-GAN/MaskGIT/MUSE

© YIEALEC )&
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ZHR4RY: MusiclM

(audio, text) same song?

v

Audio-Text Contrastive Loss

A

[ Audio Embedding ]

[ TextEmbedding |

Audio Embedding Network, f Text Embedding Network, g

4

relaxing jazz piano
for rainy days

MulLan (Text)

SoundStream

1 Acoustic |

[[ MuLan tokens M Al Semantic tokens S |

modeling 1

Acoustic tokens A ]]

Semantic
[[ MuLan tokens M 4 ]WP[ Semantic tokens S ]]

Cwe 1( yutan audio)

~

J

[ kemeans | (- w2v-BERT A

-

SoundStream

. -
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Target Audio m

MM

Generated audio

"Hip hop song with
violin solo”
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MusicLM

=FRK

Separated

Semantic Coarse
Vocals , Acoustic | Code
Semantic e Probabilities
. -BERT ncoder-Decoder INS&S
" "|“||||||I|I|||' ™| encoaer |™ = Transformer R --
. w2v-BERT
Noise S d Encoder
eparate
il |l| o 1 II I'Illlllll oes
| el || Instrumental ||| || | Ear(gjet
oundStrea odes
. Coarse
Semantic .
Acoustic
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