
2023-06-01

Speak, Read and Prompt

High-Fidelity Text-to-Speech with Minimal Supervision

2

Outline

SPEAR-TTS: Speak, Read and Prompt

Introduction

Recap

• w2v-BERT: Combining Contrastive Learning and MLM for Self-Supervised Speech Pre-Training

• SoundStream: An End-to-End Neural Audio Codec

Application

• ★ SPEAR-TTS: Speak, Read and Prompt: High-Fidelity Text-to-Speech with Minimal Supervision

Conclusion

3

Introduction

SPEAR-TTS: Speak, Read and Prompt

文本 音素 梅尔特征 语音波形

g2p 声学模型 声码器

目前典型的 TTS 模型

文本 音素
目标音频
Codec

语音波形

g2p 语言建模 声码器

参考音频
Codec

4

Introduction

SPEAR-TTS: Speak, Read and Prompt

目前典型的 TTS 模型

• 模型结构：较复杂，需要人工设计

• 中间特征：梅尔特征（连续空间）

• 建模方式：非自回归（时长预测）

• 参考音频输入：梅尔特征 / CPC

• 训练数据规模：<600 小时 (Libri-TTS)

• 模型结构：纯粹的 Transformer LM

• 中间特征：音频 Codec（离散 Token）

• 建模方式：自回归（语言模型）

• 参考音频输入：音频 Codec（离散 Token）

• 训练数据规模：60k+ 小时 (Libri-Light) !!!

基于离散化语音表征的音频生成模型 · 一览表

SPEAR-TTS: Speak, Read and Prompt 5

基于离散化语音表征的建模成为一种新范式

6

Introduction: SPEAR-TTS

SPEAR-TTS: Speak, Read and Prompt

从 VALL-E 到 SPEAR-TTS

• VALL-E 使用大量的文本-语音数据对，硬 train 一发

• 问题：如何用更少的文本-语音数据对，达到高质量的 TTS？

VALL-E 两阶段建模

Text → Acoustic Tokens → Wave

SPEAR-TTS 三阶段建模

Text → Semantic Tokens → Acoustic Tokens → Wave

7

Semantic Tokenizer: w2v-BERT

SPEAR-TTS: Speak, Read and Prompt

• 出发点：从语音中抽取出内容和语义信息

• 应用：语音识别/理解任务，偏重文本层面，不关注波形的细节信息

8

Semantic Tokenizer: w2v-BERT

SPEAR-TTS: Speak, Read and Prompt

• 出发点：从语音中抽取出内容和语义信息

• 应用：语音识别/理解任务，偏重文本层面，不关注波形的细节信息

• 思想：MLM/对比学习，两个预训练目标（多任务），提高预训练效果

• 模型参数：M=12，N=12，总参数量 0.6B (XL)

9

Semantic Tokenizer: w2v-BERT

SPEAR-TTS: Speak, Read and Prompt

Semantic Token 提取

• 抽取位置：MLM 模块的第 7 层输出

• 先对输出 embedding 进行正则化（均值为 0，方差为 1）

• 再预设聚类个数 K（1024）进行 k-means 聚类

• 聚类后类别 id 作为离散的语义符号（Semantic Token）

• 出发点：从语音中抽取出内容和语义信息

• 应用：语音识别/理解任务，偏重文本层面，不关注波形的细节信息

10

Acoustic Tokenizer: SoundStream

SPEAR-TTS: Speak, Read and Prompt

设计初衷：低码率的端到端神经网络编解码器

• 目标：对语音进行压缩，压缩后的表征能够尽可能还原波形

• 码率/比特率 (bit rate)：每秒钟数据需要传输的比特数。

• 比如：采样率为 24kHz 的 PCM，每个采样点用 16 bit 有

符号整数存储，码率为 24kHz × 16 bit = 384 kbps。

SoundStream 核心步骤

• 编码器 Encoder 压缩得到 embedding

• VQ 计算得到距离最近的码本向量的整数 id 序列

• 将整数 id 序列传送到解码器 Decoder

• 解码器端根据码本向量「还原」出 embedding

• Decoder 恢复出语音波形

11

Acoustic Tokenizer: SoundStream

SPEAR-TTS: Speak, Read and Prompt

模块一：编码器（Encoder） Encoder

• 作用：对语音信号的信息进行压缩，降低传输带宽要求

• 网络结构设计：

• 降采样倍数逐渐增加：320 倍降采样

• 空洞卷积扩大深层一维卷积的感受野

• 输入：24kHz 的一维采样点数值序列

• 输出：75Hz 的 K 维向量序列

问题：帧率降低后码率是否降低？

• 输出 embedding：K = 1024，用 float32 存储

• 码率：75 Hz × 1024 × 32bit = 2.4 Mbps

• 结论：如果直接用Encoder 输出的连续空间隐层表征，码率过高

• 假设网络带宽要求音频比特率为 6kbps

• 每帧的 bit 数： 6kbps / 75Hz = 80 bit

• 如果传输浮点数：80bit / 32bit = 2.5

• 如果传输整数：能表示 2^80 范围内的整数

12

Acoustic Tokenizer: SoundStream

SPEAR-TTS: Speak, Read and Prompt

模块二：VQ（Vector Quantization）

使用一组有限的向量集合，来表示该维度的所有向量

• codebook (码本)：有限的向量集合

• centroid：码本中的向量

• codebook size (码本大小)：codebook 集合中向量的个数

• Tokenizer：对于一个向量，码本中与之欧式距离最近的向量 id（整数）

回顾：VQ 的几个问题

1. argmin 不可导：Straight-Through Estimator

2. codebook 初始化

• 第一个 batch 数据 Encoder 的 embedding 进行 k-means

聚类，使用聚类中心作为各码本向量的初始值

3. 损失函数

13

Acoustic Tokenizer: SoundStream

SPEAR-TTS: Speak, Read and Prompt

VQ （Vector Quantization）

• Encoder 每帧（帧率 75Hz）输出一个 embedding 向量

• 每帧的 bit 数： 6kbps / 75Hz = 80 bit

• 80bit 能够表示的整数 id 个数： 2^80，建模 2^80个码本向量？！

• 问题：码本过大，模型无法学习

RVQ （Residual Vector Quantization）

• Nq=8 个 VQ 量化层，每层用 10 bit 表示 Token 数值范围，

• 对应的每层码本向量为 2^10 = 1024 个码本向量

模块二：VQ（Vector Quantization）

Acoustic Tokens

14

Acoustic Tokenizer: SoundStream

SPEAR-TTS: Speak, Read and Prompt

模块三：解码器（Decoder）

15

Acoustic Tokenizer: SoundStream

SPEAR-TTS: Speak, Read and Prompt

如何尽可能恢复出语音的原始波形？

采用 GAN 的思想：

1. 采用的 GAN 的训练方式提高生成语音的质量

2. 将整个编码器+RVQ+解码器视为生成器

3. 加入判别器区分原始语音和解码后生成的语音

频域判别器：STFT 判别器

• 输入 24kHz 原始波形进行 STFT 短时傅里叶变换

• W=1024，H=256

• STFT 得到二维频域输出，T/H × F（帧数×频域特征维度）

• 时域降采样 8 倍，频域降采样 64 倍

• 输出 logits 表示当前输入是真实语音还是生成语音

模块四：判别器（Discriminator）

16

Acoustic Tokenizer: SoundStream

SPEAR-TTS: Speak, Read and Prompt

时域判别器：多尺度判别器（来源：MelGAN/HiFi-GAN）

• 3 个 Discriminator Block 结构相同

• 三个不同尺度的判别器分别为 D1、D2、D3

• 输入的音频相当于是不同的采样率

• D1 处理的是原始音频帧率的采样点

• D2 处理的是 2 倍降采样之后的音频采样点

• D3 处理的 4 倍降采样后的采样点

• 每个判别器都会输出当前输入波形（降采样后）是真实语音还是生成语音

模块四：判别器（Discriminator）

17

Acoustic Tokenizer: SoundStream

SPEAR-TTS: Speak, Read and Prompt

Generator：编码器 + RVQ + 解码器

Discriminator：STFT 判别器：k=0 + 多尺度判别器：k=1,2,3

训练目标汇总

18

Acoustic Tokenizer: SoundStream

SPEAR-TTS: Speak, Read and Prompt

Acoustic Tokens

SoundStream 原理图

19

Acoustic Tokenizer: Encodec（VALL-E）

SPEAR-TTS: Speak, Read and Prompt

Encodec 原理图（VQ-GAN）

20

Acoustic Tokenizer: Encodec（VALL-E）

SPEAR-TTS: Speak, Read and Prompt

VQ-GAN

21

思考一：两种 Audio Token 的对比

SPEAR-TTS: Speak, Read and Prompt

Semantic Token Acoustic Token

输入特征
• 原始采样点：CPC/wav2vec2/Hubert

• 梅尔特征：w2v-Conformer/w2v-BERT
原始采样点

训练方式 对比学习 / MLM GAN

更倾向于的模态 文本 语音

编码的信息 语音的语义内容 波形细节信息

22

SPEAR-TTS

SPEAR-TTS: Speak, Read and Prompt

核心思路

出发点：VALL-E 数据量过大，小数据量下能否达到高质量 TTS？

1. S1 (Read)：文本 → Semantic Token，需要文本-语音数据对

2. S2 (Speaking)：Semantic Token → Acoustic Token，只需要语音数据

3. 音频解码：Acoustic Token → 语音波形，只需要语音数据

wav2vec-Bert 用于提取语义 token

• 语义内容的信息，更接近文本模态

SoundStream 提取细粒度声学 token

• 音频波形细节的信息，更接近语音模态

显著优势

1. 相比于 VALL-E 直接从文本到声学 token，SPEAR-TTS 以

语义 token 作为中间特征，降低了建模难度

2. 语义 token → 声学 token 的建模过程不需要 pair 数据，

只需要无标注语音，降低了对数据的要求

3. 语义信息基本去除了音色信息，因此 S1 阶段可以用单说话

人的数据训练，S2 阶段基于 Prompt 控制合成语音的音色

23

SPEAR-TTS

SPEAR-TTS: Speak, Read and Prompt

S1（第一阶段）：文本 → 语义 Token

• 建模方式：Transformer（Encoder-Decoder）

• Transformer 对 pair 数据量要求高，如果避免小数据量时过拟合？

优化方案一：BART/T5 预训练

• 第一步：预训练

• 输入：破坏后（corrupted）的语义 token 序列

• 输出：真实的语义 token 序列

• 破坏：随机插入/删除/mask 一个或多个 token

• 第二步：使用少量文本-语音 pair 数据微调

• 输入：文本；输出：语义序列

• 固定 Encoder 深层参数和 Decoder 不涉及 Cross-Attention 的参数

• 微调 Encoder 浅层参数和 Cross-Attention 的相关参数

24

SPEAR-TTS

SPEAR-TTS: Speak, Read and Prompt

S1（第一阶段）：文本 → 语义 Token

• 建模方式：Transformer（Encoder-Decoder）

• Transformer 对 pair 数据量要求高，如果避免小数据量时过拟合？

优化方案二：Back-Translation

• 思想：使用现有 pair 数据训练 ASR 模型，对无标注的语音进行识别

• 第一步：方案一中预训练的 T5 模型，使用 pair 数据，输入是语义序列，输出改为文本

• 第二步：固定 Encoder 参数，只微调 Decoder 参数（相当得到一个 ASR 模型）

25

SPEAR-TTS

SPEAR-TTS: Speak, Read and Prompt

S2（第二阶段）：语义 Token → 声学 Token

• 语义 token并不包含说话人层面信息，直接预测声学 Token，合成语音的音色不可控（随机）

• 如何指定合成语音的音色？ → AudioLM

AudioLM 的思想：

• SoundStream 的 RVQ 属于分阶段量化，声学 token 携带的信息也具有一定的层次结构

• 前若干个 (𝑄′) 量化器（粗粒度量化器，coarse quantizer）用来恢复说话人特性、录制环境等全局的粗粒度信息

• 剩下的量化器（细粒度量化器，fine quantizer）更侧重于波形的细节信息

26

SPEAR-TTS

SPEAR-TTS: Speak, Read and Prompt

S2（第二阶段）：语义 Token → 声学 Token

问题设定

• 给定一段语音/音频作为 prompt，生成后续的音频

• t 时刻语义 token 为 zt

• t 时刻声学 token (Q个)为 yt
i (i=1,2,…,Q)

AudioLM 三步建模法

第一步：语义建模

第二步：粗粒度声建模

27

SPEAR-TTS

SPEAR-TTS: Speak, Read and Prompt

S2（第二阶段）：语义 Token → 声学 Token

前提假设

• t 时刻语义 token 为 zt

• t 时刻声学 token (Q个)为 yt
i (i=1,2,…,Q)

AudioLM 三步建模法

第三步：细粒度声学建模

https://google-research.github.io/seanet/audiolm/examples/

28

SPEAR-TTS

SPEAR-TTS: Speak, Read and Prompt

S2（第二阶段）：语义 Token → 声学 Token

训练过程：

同一条音频选取两个不重叠的语音片段，分别作为 prompt 和目标语音

• 输入：

• prompt 的语义 token （w2v-BERT）

• 目标语音的语义 token （w2v-BERT）

• Prompt 的声学 token （SoundStream）

• 预测目标：

• 目标语音的声学 token

推理过程

• 目标语音的语义 token 是使用第一阶段的文本 → 语义 token 模型预测得到的

• 基于预测的声学 token 序列，使用 SoundStream 的解码器生成语音

29

SPEAR-TTS

SPEAR-TTS: Speak, Read and Prompt

实验配置

SoundStream
• 训练数据：Libri-Light（60k 小时）

• 音频采样率：16 kHz

• 降采样倍数：320 倍

• RVQ 层数：3 层

• 每秒 token 个数：50 × 3 = 150

• 每层 codebook 大小：1024 (10bit)

• 比特率：1500 bps

w2v-BERT
• 训练数据：Libri-Light（60k 小时）

• 音频采样率：16 kHz

• 降采样倍数：640 倍

• 每秒 token 个数：25 个

• embedding 抽取位置：MLM 模块第 7 层

• k-means 聚类个数：512 (9 bit)

• 比特率：25×9=225 bps

第一阶段：Text → Semantic Token

• T5 预训练+Back-Translation+微调

• 训练数据：Libri-Light（60k 小时）

• 模型结构：T5-large

• Back-Translation：Libri-TTS (550 小时，无标注)

• 微调数据：LJSpeech 单说话人（24 小时）

30

SPEAR-TTS

SPEAR-TTS: Speak, Read and Prompt

实验配置

第二阶段：Semantic Token → Acoustic Token

• 训练数据：Libri-Light (60k 小时)

• 模型结构：12 层 Decoder-Only Transformer

• head=12, d = 64，FFN 隐层 2048

实验基线

• FastSpeech2 + HiFi-GAN

• VALL-E

评测数据

• LibriSpeech test-clean 2700 条

评测指标

• CER：判断合成语音的正确性

• 音色一致性：合成语音与 prompt 属于同一个说话人的概率

• MOS：1-5

实验结果

31

SPEAR-TTS

SPEAR-TTS: Speak, Read and Prompt

实验结果

https://google-research.github.io/seanet/speartts/examples/

32

思考

SPEAR-TTS: Speak, Read and Prompt

Semantic Token / Acoustic Token 对比
• 网络结构的设计
• 目标函数的不同
• 是否可以将两者结合

• 不使用自回归，MQ-TTS
算力的提升带来技术思想的倒退？
• 单纯的 TTS 合成是否有必要走 ChatGPT 的路子
• 大数据量对于 TTS 任务的收益是什么？

文本/语音/图像的多模态统一模型
• SpeechGPT
• VQ-GAN/MaskGIT/MUSE
• 训练不匹配问题

模型 语种 数据集 数据量（小时）

VALL-E 英文 Libri-Light 60k

VALL-E X 英文+中文 Libri-Light + WenetSpeech 60k+10k

NaturalSpeech2 英文 MLS-en 44k

MQ-TTS 英文 GigaSpeech 7k+

SoundStorm 英文 自有 100k

33

音乐生成：MusicLM

SPEAR-TTS: Speak, Read and Prompt

34

伴奏生成：MusicLM

SPEAR-TTS: Speak, Read and Prompt

35

Thanks!

SPEAR-TTS: Speak, Read and Prompt

	Slide 1
	Slide 2: Outline
	Slide 3: Introduction
	Slide 4: Introduction
	Slide 5
	Slide 6: Introduction: SPEAR-TTS
	Slide 7: Semantic Tokenizer: w2v-BERT
	Slide 8: Semantic Tokenizer: w2v-BERT
	Slide 9: Semantic Tokenizer: w2v-BERT
	Slide 10: Acoustic Tokenizer: SoundStream
	Slide 11: Acoustic Tokenizer: SoundStream
	Slide 12: Acoustic Tokenizer: SoundStream
	Slide 13: Acoustic Tokenizer: SoundStream
	Slide 14: Acoustic Tokenizer: SoundStream
	Slide 15: Acoustic Tokenizer: SoundStream
	Slide 16: Acoustic Tokenizer: SoundStream
	Slide 17: Acoustic Tokenizer: SoundStream
	Slide 18: Acoustic Tokenizer: SoundStream
	Slide 19: Acoustic Tokenizer: Encodec（VALL-E）
	Slide 20: Acoustic Tokenizer: Encodec（VALL-E）
	Slide 21: 思考一：两种 Audio Token 的对比
	Slide 22: SPEAR-TTS
	Slide 23: SPEAR-TTS
	Slide 24: SPEAR-TTS
	Slide 25: SPEAR-TTS
	Slide 26: SPEAR-TTS
	Slide 27: SPEAR-TTS
	Slide 28: SPEAR-TTS
	Slide 29: SPEAR-TTS
	Slide 30: SPEAR-TTS
	Slide 31: SPEAR-TTS
	Slide 32: 思考
	Slide 33: 音乐生成：MusicLM
	Slide 34: 伴奏生成：MusicLM
	Slide 35

