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“Reading”: needs parallel data, but benefits from
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Purely LLM based Audio Generation

Speech-X: Versatile VALL-E

SpeechX

Input text

2025/12/20

Phoneme Conversion

MR —

SR ==
Fr=Tan

Input audio

S ==
=

L BRI/ RIRAE/ BIRAFHEY..

S HFE ==
=)

Generated audio  «s1] Jus-

Audio Codec Decoder

Neural Codec Language Model

Task-based Prompting

Audio Codec Encoder

TTS

NA+HES — BE. 1BERE/ ...

N7 prompt:

B8 prompt:

T
A

Coj €1 Crj

' h '

NAR Transformer Decoder

x | c 1 Pt Pt
G2P EnCodec Corj-1  C114-1 - €r.154-1 :
t 1 NAR ID j
Text |||I|||||I||- ) )
Cy 1- ’-';,1-"'. C2q - <E0S>
£t t

AR Transforrr;gr ISE_eco&er .,'
x 1 Pt R RS B

G2P to1 Box - Bpa €01 ‘trn e LTy
T T L4 L4 V4 R
Text EnCodec ' - '
t
-|||||-|||||-

Conditional Codec Language Modeling
— TxL
Encodec O =[oy;] € N

T
EAR = - Z log P(Ot,1|T) A'.'O(t,l; QA.R)
t=1

8
Laar = — Z log P(01,1|T, A, 0. <i; QNAR)‘

=2

Unified Model for Voice and Audio Generation (Part 1)



Design Task-Specific Prompting
« {ESSHRC + condition A + Bt (ATRTINF, EEDWERH)

Task Textual prompt 7 Acoustic prompt A Desired output ©

Noise suppression G2P(text) / null <ns>, C(s +n) C(s)

Speech removal G2P(text) / null <sr>, C(s +n) C(n)

Target speaker extraction G2P(text) / null C(s}), <tse>, C(s1 + s2) C(s1)

Zero-shot TTS G2P(text) C(s) C(s')

Clean speech editing G2P(text) C(spre), <soe>, <mask>, <eoe>, C(spost) C(spre); C(Seqit); C(Spost)

Noisy speech editing G2P(text) C(spre + Npre), <soe>, C(Smid + Mmid), <eoe>, C(Spost + Mpost) C(Spre + Npre); C(Sedit + Mmid), C(Spost + Npost)

Model Noise suppression Target speaker extraction Zero-shot TTS Clean speech editing Noisy speech editing Speech removal
WER| DNSMOStT PESQf WER| DNSMOSt PESQT WER| SIMt WER|  SIM? WER|  SIM? MCDJ
No processing 3.29 242 1.93 12.55 3.04 2.27 1.71 1.00 38.29 0.96 42.48 0.87 12.57
Expert model DCCRN [39], [40] VoiceFilter [22] VALL-E [16] A3T [20] A3T [20] N/A
6.39 3.25 3.52 5.09 3.39 2.90 590 0.57 17.17 0.29 32.17 0.18

SpeechX (random init.) 2.56 3.05 2.24 3.12 3.46 227 540 0.57 8.10 0.75 15.33 0.64 3.04
SpeechX (VALL-E init.) 2.48 3.05 2.24 2.53 3.46 2.28 4.66 0.58 5.63 0.76 13.95 0.65 3.05
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« IS Prompt 12 EHERER

TABLE III
RESULTS OF NOISE SUPPRESSION AND TARGET SPEAKER EXTRACTION
WITH OR WITHOUT TEXTUAL PROMPT.

Prompt Noise suppression Target speaker extraction
WER| DNSMOST PESQT WER] DNSMOSt PESQ?T
w/ text 248 3.05 224 2.53 3.46 2.28
w/o text 6.76 3.05 2.20 5.00 3.01 2.23
-+ SESERRNIEGR RSN
TABLE IV

EFFECTS OF ADDING TASKS DURING TRAINING. ZS: ZERO-SHOT, SE: SPEECH EDITING, NS: NOISE SUPPRESSION, SR: SPEECH REMOVAL, TSE: TARGET
SPEAKER EXTRACTION.

Trainine tasks Zero-shot TTS Speech editing (clean/noisy) Noise suppression Speech removal Target speaker extraction
g WER| SIM?T WER/ SIMt WER| DNSMOSt MCDJ WER| DNSMOST
ZS-TTS 5.90 0.57 - - -
===
SIANSIRFEHE ZS-TTS + SE 455  0.58 579 / 1380 076 / 0.65 - - -
%E{JEE&, F=—»ZS-TTS + SE + NS/SR 5.11 0.57 691 / 1323 077 [/ 0.66 2.59 3.03 3.04 - -
HAEmE0n ZS-TTS + SE + NS/SR + TSE 4.66 0.58 563 / 1395 076 [/ 065 2.48 3.05 3.05 2.53 3.46
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“Reading”: needs parallel data, but benefits from
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Purely LLM based Audio Generation
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Table 1: Dataset usage in training and inference stages.

Language S1 S2/S3 Application  Zero-Shot Testing
English LibriTTS train LibriLight TTS, VC LibriTTS test
Chinese OpenCPOP train  OpenCPOP+OpenSinger+CSMSC SVS M4Singer test

Table 2: Quality and style similarity of generated samples in zero-shot text-to-speech.

Model MOS (1) SMOS (1) CER() Cos (1)
GT 4.23+0.09 / 0.030 /
Meta-StyleSpeech 3.84+0.08 3.76+0.09  0.065 0.73

Zero-Shot Text-to-Speech

GenerSpeech 3.99+0.08 3.77£0.08 0.059 0.75
YourTTS 3.894+0.08 3.72+£0.06  0.143 0.72
Make-A-Voice (TTS) 4.04+0.07 3.81+0.08  0.068 0.77

Small-Scale Subjective Test

VALL-E 3.92+0.12 3.81+0.07 / /
SPEAR-TTS 3.984+0.06 3.84+0.06 / /
Make-A-Voice (TTS) 4.05+0.10 3.83+0.08 / /

Unified Model for Voice and Audio Generation (Part 1)
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Table 3: Quality and style similarity of generated samples in zero-shot voice conversion.

Model MOS (1) SMOS (1) Cos (1)
GT 4.26+0.06 / /
NANSY 3.89+0.08 3.73+0.10  0.68
PPG-VC 397+0.06 3.80+0.07  0.78

Zero-Shot Voice Conversion
Make-A-Voice (VC)  4.0710.06

3.77+0.07 0.80

Hu

bert Semantic Token

AR S GIHER?

Table 5: Ablation studies.

Model CER(]) STOI(t) MCD ()
HuBERT-10 0.54 / /
HuBERT-11 0.44 / /
HuBERT-12 0.39 / /

S3: SoundStream / 0.92 1.90
S3: Unit Vocoder / 0.93 1.56

Table 4: Quality and style similarity of generated samples in zero-shot singing voice synthesis.

Model MOS (1) SMOS (1) Cos () FFE({)

GT 4.08+0.08 / / /

FFT-Singer 3.83+0.09 3.91+0.08  0.93 17

Diffsinger 3.984+0.07 3.98+0.07  0.94 008  VIGFIHEEN ERE— L ESRY speaker
Zero-Shot Singing Voice Synthesis

Make-A-Voice (SVS)  3.994+0.08 3.96+0.07  0.88 0.05

2025/12/20
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Applications S1 Sa

TTS Text-to-semantic Semantic-to-acoustic
SVS Text-to-semantic with duration  Semantic-to-acoustic with Fo
VC K-means Semantic-to-acoustic
SVC K-means Semantic-to-acoustic with Fo
S28T Speech-to-semantic Semantic-to-acoustic

Table 3: Dataset usage in training and inference stages.

Tasks Language Dataset Testing set

TTS/VC Ja, De, Fr, En, Es, Zh  Librilight, Gigaspeech, WenetSpeech, CSS, AISHELL  LibriTTS/VCTK

SVS En, Zh OpenSinger, M4Singer, CSD, Kiritan Opencpop
S2ST Fr, En, Es, De SpeechMatrix SpeechMatrix test
Model TTS-WER TTS-SIM  VC-SIM
Base 9.8 0.84 0.75
Medium 8.3 0.86 0.76
Large 6.1 0.87 0.76
1=BIS%: 160M, 520M, 1.2B
2025/12/20
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Table 7: Zero-shot VC and SVC.
Model MOS (1) SMOS(?) SIM()
Voice Conversion
Prompt 4.26+0.06 / /
NANSY 3.89+0.08 3.73+0.10 0.68
PPG-VC 3.97+£0.06 3.82+0.05 0.78
MVoice (Zero-shot) 4.02+0.08 3.78+0.06 0.80
Singing Voice Conversion
Prompt 4.21+0.05 / /
MVoice 3.96+0.06 3.72+0.05 0.76
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Towards LLM Based Audio Generation Foundation Model

UniAudio: Towards a Foundation Model for Audio Generation
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Towards LLM Based Audio Generation Foundation Model

UniAudio: Towards a Foundation Model for Audio Generation
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Figure 3: Order of token prediction for SPEARTTS (left), VALL-E (middle) and the proposed
multi-scale Transformer (right). Assume n, = 3 and T' = 3. Current token prediction (red) is
conditioned on prior tokens (in green).
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Table 6: Data statistics

Dataset Type Annotation Volume (hrs)
Training
LibriLight (Kahn et al., 2020) speech - 60k
LibriTTS (Zen et al., 2019) speech text 1k
MLS (Pratap et al., 2020) speech - 20k
AudioSet (Gemmeke et al., 2017) sound - 5.8k
AudioCaps (Kim et al., 2019) sound text description 500
Task Conditions Audio Target WavCaps (Mei et al., 2023) sound text description Tk
o Million Song Dataset (McFee et al., 2012) music text description Tk
Te)-(t to Speec}.l (TTS) (VXang et al., 2023a) : , speaker prompt speech OpenCPOP (Wang et al., 2022) singing text, MIDI 52
Voice Conversion (VC) ® (Wang et al., 2023e) semantic token, speaker prompt speech OpenSinger (Huang et al., 2021a) singing text, MIDI 50
Speech Enhancement (SE) * (Wang et al., 2023b) noisy speech speech ?ISHEIS—D (ih(ic(:t al, ;21102022)23) SPEECE text 2%50
. & . rompt peeci uo et al., speec. text, instruction
Tfirggt Speelech Extractlpn (TSE) .(Wang etal., 2018) rmx.ed speeqh, speaker prompt s.pee.ch openSLR26,0penSLR28 (Ko et al., 2017) Room Impulse Response N 100
Singing Voice Synthesis (SVS) (Liu et al., 2022) (with duration), speaker prompt, MIDI singing Tout
Text-to-Sound (Sound) (Yang et al., 2023c) textual description sounds (..'S -
Text-to-Music (Music) (Agostinelli et al., 2023) textual description music I{}Cbgil’x‘lh ‘CStt'leeag[ia?n)aym"V etal. (2015) Speecll: :eX: 5%
. A . T - . eaux € . speec (.4
Audio Edit (A-Edit) *¢ (Wang et al., 2023d) textual description, original sounds sounds TUT2017 Taskl (Mesaros et al., 2017) Sf,ise B 10
Speech dereverberation (SD) *C (Wu et al., 2016) reverberant speech speech Cloth (Drossos et al., 2020) Sound text description 3
~ & P . MusicCaps (Agostinelli et al., 2023) Music text description 15
Instruct 'I'ljS (I T'IjS)<> (Guo et al., 2023) me, textl}al 1nst@?u0n speech M4Singer(Zhang et al., 2022) singing text, MIDI 1
Speech Edit (S-Edit) ¥ (Tae et al., 2021) (with duration), original speech speech
Table 7: Dataset adoption of all tasks
Task Training dataset Test set Train Volume (hrs)
Type Speech (VCTK) Sound (cloth) Music (musiccaps) Sing (m4sing) Average Training Stage
P (Veaux et al., 2017) | (Drossos et al., 2020) | (Agostinelli et al., 2023) | (Zhang et al., 2022) - TTS Librilight LibriSpeech clean-test 60k
Model n, FPS TPS | PESQ  STOI | PESQ STOI PESQ STOI PESQ  STOI | PESQ STOI vC Librilight VCTK 60k
Encodec 8 75 600 | 2.18 0.79 223 0.48 1.86 0.57 1.95 0.76 205 065 SE MLS, Audioset TUT2017 Taskl, VCTK 20K
TSE MLS Libri2Mix test set 10k
Ours 3 50 150 2.96 0.85 242 0.49 1.99 0.57 3.13 0.85 2.62 0.69 Sound AudioCa
ps, WavCaps Cloth test set Tk
Ours 4 50 200 | 3.11 0.86 2.5 0.51 2.08 0.59 3.27 0.86 273 071 Music MSD MusicCaps T
Qurs 8 50 400 3.36 0.88 2.67 0.54 2.31 0.65 3.49 0.89 295 0.74 Singing OpenCPOP, OPenSinger, AISHEELL-3 M4Singer test set 150
Fine-Tuning Stage
I-TTS PromptSpeech PromptSpeech test set 200
Speech dereverberation LibriTTS, openSLR26, openSLR28 LibriTTS test set 100
Speech edit LibriTTS LibriTTS test set 100
Audio edit AudioCaps, WavCaps AudioCaps test set 500
Sum - - 166k
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. %AER%GEEE@Z =& UniAudio?

D= EiFthEFRIKFETEIR?
HE—: gE3+IFEEIA
« VALL-E / Speech-X
- BRI BOEERNFIIKE
+ Make-A-Voice / UniAudio (RVQ E#i 3)
- BE=: EHAEESKFYIEIER Transformer
« MVoice / UniAudio
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Objective Evaluation

Subjective Evaluation

Task Model Metrics Results Metrics Results
Shen et al. (2023) 062/23 3.83+0.10/3.11+0.10
TS Unpdogno swoMERG 00U Swost JTeierien
nAudio a al . . u .
Voice ‘Wang et al. (2023e) 0.82/4.9 MOS(1) 3.414+0.08/3.17+£0.09
Conversion UniAudio (Single) ~ SIM(T) / WER(]) 0.84/54 / SMOS(1) 3.45+0.07/ 3.44+0.07
(VO) UniAudio 0.87/4.8 3.544-0.07 / 3.56-0.07
Speech Richter et al. (2023) PESQ(T) 321/2.727/329 3.56+0.08
Enhancement  UniAudio (Single) ~ /VISQOL(f)  235/230/345  MOS(1) 3.65+0.08
(SE) UniAudio { DNSMOS(*1) 2.63/2.44/3.66 3.68L£0.07
Target Speaker  Wang et al. (2018) PESQ(T) 2.417/2.36/335 3.4320.09
Extraction  UniAudio (Single) ~ /VISQOL(f)  197/161/3.93  MOS(1) 3.58+0.08
(TSE) UniAudio / DNSMOS(1) 1.88/1.68/3.96 3.72+0.06
Singing V(_)ice Lilu et al (2@0.2) MOS(1) 3.9440.02 / 4.050.06
Ve Uniudio ' /SMOS(1) 05 0,04, 404005
nAudio
Liu et al. (2023a) 493/2.6 61.0+£1.9/65.7+1.8
Te"(g:;’l;:d")““d UniAudio (Single) ~ FAD ({) /KL ({) 3.84/27 fl}z\gi ((TT)} 60.0+2.1/61.2+1.8
UniAudio 3.12/26 61.9+1.9/66.1+1.5
. Copet et al. (2023) 452/1.4 73.3+1.5/71.3+1.7
Tex(tﬂ;?l-s?:;lSIC Un[ijAuqio (Single)  FAD (1) /KL (1) 524/18 fl}gi ((TT)} 64.4+2.1/66.2+2.4
UniAudio 3.65/19 67.9x1.7/70.0£1.5
Evaluation
Task Model Metrics Results
. . AUDIT (Wang et al., 2023d) 20.78 /0.86
A(‘f_‘]‘;dlj‘gn UniAudio (scratch) FD () /KL (}) 19.82/0.92
UniAudio (tuning) 17.78/0.77
Speech Dereverb SGMSE+ Richter et al. (2023) 2.87/3.42
oy UniAudio (scratch) PESQ(1) / DNSMOS (1) 1.23/3.18
UniAudio (tuning) 2.13/3.51
Instructed TTS GroundTruth 3.77+£0.07 / 3.851+0.08
(LTTS) UniAudio (scratch) MOS(1) / SMOS(1) 3.624+0.07 / 3.6740.08
UniAudio (tuning) 3.61+0.09 /3.71+0.09
S . TTS system regeneration 6.98 /3.69+0.08
peech Edit : -
'S Bdit) UniAudio (scratch) MCD(}) / MOS(1) 5.26 /3.73+0.07
UniAudio (tuning) 5.12/3.82+0.06
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Foundation Model for Audio Understanding and Generation

Background: Foundation Model for Speech and Audio Understanding

LTU Romantic music is being played... Output: The subway sound suggests that it is a busy station with (
many people coming and going, while the announcement
T provides information about the train schedule. D Q-Former queries Texttresponse
2 2 I
Whisper features
Lora Adapters [ LII__ aMAAd th_M Y ] D BEATS: features Large Language Model LoRA %
ora Acaplers [] Auditory embeddings
I 2X Down Sampling T @ @ D Textual embeddings t t
* t T _
T . [ Projection#l] ( Text Embedding - /¥ Frozen/Trainable
=03 .. (@) "
28 sl 1 R Winow v ) 1
TQOQ . O T Spoken Text [ This train's ‘ QFormer % [T T3 - .
M T N T * | destination is I ] I Text instruction prompt
i 2 Yk B aYe Union Station..."
(Deseribe the sound3 whisper % | _ | whisper |- = ez s Whisper [ #]
| RN T | Encoder Decoder == = Encoder ®
= s @ =2=2 - -
I s g | -+ Input BEATs
] -~ M | | rOOmEr - ——————— A [ ] ))) Encoder
— L X —J I W What can be inferred from the audio? | [
64 Input Audio-Text Pair L S JJ L
LTU LTU-AS SALMONN
BEE/SHUERM#AY Foundation Model
« BHESANA,; MAESES/E+Text Instruction
- BIES/SIERIEIT Encoder (Whisper / CLAP / BEATS ), B§3%E| LLaMA 4 embedding 4R
« Finetune 5,: LoRA
- Bfr: &5 LLaMA (GPTx) BEBE## prompt PIES/SMASHIEE
2025/12/20
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Foundation Model for Audio Understanding and Generation

VoxtLM SpeechGPT

Multiple outputs (§25F, §™, or A1)
A
[ |

Text (V) ————> ——> Text (V) 24 4 4 g
& Voxt - Decoder-only & Prediiction Layer
= r— Vocabulary | ~ Language Model Speech E P S S S
£ | Tokenizer D 4 D > Token —> § Transformer Decoder Block .
& Lbzcad s & L S Y S S S N
Embedding Encoding Modules

R e R RNy
Langljuage \_‘—} Task ID

AudioPalLM D Multiple inputs (45718, Smts o stts)

(a) Multi-task auto-regressive codec LM

© | audio tokens
© | text tokens
pre-trained on text-only data

Audio
Embeddings

Matrix b SoundStorm
J——— g {© © O orAudioLM
i ki i stages 2 + 3

Decoder-only

[S28T French English] Audio&text [© © @0 © 0 O | Text !\ Transformer |
i ’ e 1 : -
(3SR Ttaiian] tokenizers Jo 000 | embeddings | ©© | etokanizer |mondo!
\—_ Matrix F Y !
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Final Fantasy: Any-to-Any Generation

Text = Sy ==

o Image Image Input Image Output Image L}
Image |~ Encoder Projection 4. Projection 4. Diffusion ™
. Audio Audio Input Audio Output Audio
Audio “Ill Encoder Projection .. Projection . Diffusion

Video [2 Video Video Input 7( N Video Output Video
Encoder Projection 4/ \ Projection 4| Diffusion
,I \\\
More modalities T T T e
Multimodal Input LLM-centric ~ LLM-based Semantic Instruction-following ~ Multimodal Output
Encoding Alignment Understanding Alignment Generation
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SpeechX: Neural Codec Language Model as a

Speech-X https://arxiv.org/pdf/2308.06873.pdf 60k + e
Versatile Speech Transformer
Make-A-Voice: Unified Voice Synthesis With
Make-A-Voice https://arxiv.org/pdf/2305.19269.pdf 60k + r

Discrete Representation

Multilingual Unified Voice Generation With

MVoice https://openreview.net/forum?id=eGdhD93hZr ~200k 5

Discrete Representation at Scale

UniAudio: An Audio Foundation Model Toward https://github.com/yangdo
UniAudio https://arxiv.or /231 704.pdf 165k

Universal Audio Generation ngchao/UniAudio
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Thanks!
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