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Fig. 1. The overview of the AudioLDM 2 architecture. The AudioMAE feature is a proxy that bridges the conditioning information to LOA translation
stage (modelled by GPT-2) and the LOA to audio generation stage (modelled by the latent diffusion model). The probabilistic switcher controls the probability
of the latent diffusion model using the ground truth AudioMAE (Fy) and the GPT-2 generated AudioMAE feature (Fyeq) as the condition. Both the AudioMAE
and latent diffusion models are self-supervised pre-trained with audio data.
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Incorporating Diffusion into Audio Generation

AudioLDM 2: Learning Holistic Audio Generation with Self-supervised Pretraining
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Incorporating Diffusion into Audio Generation

AudioLDM 2: Learning Holistic Audio Generation with Self-supervised Pretraining
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Incorporating Diffusion into Audio Generation

AudioLDM 2: Learning Holistic Audio Generation with Self-supervised Pretraining
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f=REY: LDM (Latent Diffusion Model)
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Incorporating Diffusion into Audio Generation

AudioLDM 2: Learning Holistic Audio Generation with Self-supervised Pretraining
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Incorporating Diffusion into Audio Generation

AudioLDM 2: Learning Holistic Audio Generation with Self-supervised Pretraining
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f=REY: LDM (Latent Diffusion Model)
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Understanding Diffusion Models

https://arxiv.org/abs/2208.11970
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Understanding Diffusion Models
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Understanding Diffusion Models
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Understanding Diffusion Models
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Understanding Diffusion Models
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Understanding Diffusion Models
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- Z ‘[FQ(mt—l»mt+1|mo) [DKL (q(mt‘mt—l) ” p8($t|mt+1))l
t=1 v

consistency term

AR FBNDEIIMAIRTZIA—E, R IR ERNEL
TR xp 1 Fxpyr, XFMUETTERE—RRZ sub-optimal Y
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log p(z) = log j p(zo.r)dz.r BEED
=log/P(-’Bn;T)Q(m;Th‘Io)dmL:T

q(®1:7|®0)
_ P(mn;T} ,HHtEEE"JIFES{
= log Eifey.rlao) [q—(ml;Tla‘:a)}
S E o p(zoT) log ErMEREHY Jensen AAEL
= Ta(@1i=o) U7 al@®.r|20) .
= Ey(a, rlz) |log pen) [Lee) po(@esled) p@or) = p(er) [ ] po(@e-1]2:)
' 1=, a(melee) t=1

p(ar)pe(@ol2) [T, pola, um}
gl@r|er_) [T Q{ﬂ?a|3’: 1)

= IEQ[EL:Tlan log

_ p{ﬁT)PB@’ﬂh’l}Ht 1 pe(xi|Tis1)
= lEq[h--rlmn) log
' qlar|zr-1) [, ¢(@|ze)
. T-—1
plar)pe(zo|z1) po(xe|ziy1)
=E log ————— = E,. i 1 —_—
g(zy.r|=g) | 108 Q{ﬂngﬂ?T 1) T+ Eg(zyr|z) |108 il q{mg|a:; J.}

T=1
pler) PolTe|Teq1)

=[E 1 E log ———— E,,. ] E 1
atevrien) (0870 (ZolZ1)] + Eqtes rieo) [og qler|Er_1) T Faurimo) L 1 % a(@e|@e—1)

o p(x T Pﬂ(3:|mul)
- Eq[zl:ﬂzn) [Jngﬁ('tMml:}] + [Eq(zlzﬂmo] [JOg -Ta]"|m-]" L:}:l Z Eq(zl 7|aa0) |:10g milm! l.)

plzr) po(Te|Tiiy)
= Ey(eu|a) [l0g po(@o|z1)] + Eger_s wriwo) [log (xr|er 1}] Z Faleeseeveion [l o8 g(@|ze1)

= Ey(ai|zo) l0g po(@o|®1)] — Egar_|20) [Dxilg(@r|®r-1) | P(2T))]

v v
reconstruction term prior matching term

T-1
— Z Fq(mg_l,z“_ﬂmn} [Dxvr(g(m]ze—1) || pole|Eesr))]
t=1 ~

consistency term
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Bir: BISERE xr, 45 %o

#HEr: eX p(zr) = N(zr;0,1)

REERR: X0 x. , BEEIR x.—q
RENFEME:  po(@i-a|z)

J?E@Hj X

ERERHRICENR: AW (IR EEE)

- RIEDRAXMYE, SIANBIME X

q(x¢|Ti—1) = q(x|2i—1,20)

HRIE N Hr AT

q(s—1|2e, 20)q(24 | 20)

q(mtl-’ct—l,mo) =

HpS =R gIME KL 8E

T

g(x—1|x0)

- ZEEq(mdmg) [DKL|Q(=Bt—1|=Bt; mo)l” PE(mt—ﬂmt))l

t=2
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—_———
denoising matching term

log p(x) = logj plxo.r)de,.r

= log
= log Er.'(:n1_T|=l‘-n) [q

> EQ[EI 7|ea) [log (

/ P(EU:T)Q(m:ﬂﬂm}
gl@1.7|T0)
p(xo.r)
(z1:7|20)
p(zo)

q(zy.7|z0)

dey.r

HAEERIE X

log EMERERY Jensen A&

[\ p@n) [T, po(@eiler)
= Ey(ey.rlzo) |108 plxo.T) = plxTT PolTi—1|T¢
q(z 17| )_ Hz;lq(mtlzt_l) ( ) ( )g ( | )
_ p(@r)pe(@o|21) [Ty po(@e-1|a:)
= lEq(El-‘I"Iu) lo T
q(@1|wo) TTi—p a(we|e—1)
T
T xo|x _ x| A _
= Egerrion) bgp( 7)pe (ol ;)Ht_2p0( t—1]xe) BINDG/REkME g(@|Ti—1) = q(mt|mt_1’m0)
g(z1|®o) [T;—0 q :ctlwt 1,T0)
[ po(@r)pe(wo|@1) po(xi—1|®e)
= Ey(zy.rlao) |10g ————————= + lo|
e S T gH L (@il 1, 20)
_ p(x7)pe (0 |®1) Po(Ti—1|x:)
= Eqg(ay.rlo) log a(z1|@0) - +10gH g(®e—1|®e,®0)q(me |T0)
L q(xe—1z0)
T
=|Eq(m,.1-\.-c.,) logp(mT)Pe(ﬂ’uh’l) +logH pe(mt—llmt)
q(mllmo) L g(mey @, x0 ) gl AwT]
=2 gm—ﬁ-r?
_ [\ pl@r)pe(o|e:) glwrg] | po(we_1|ze)
= St [ g (arln) gH

= Eg(@1.r|e0) |loB

= IEQ(Tl-T\Eu) [logpg(mg|m1)] + lEQ'(El-T\mu) [log

q(zr|zo)

t=2

q(@s—1|2s, 20)

pler)pe(xzo|z:) +ilog po(@i_1|xs)
qg(x:— 1|2, ®0)

p(xT) = pol@i_1|x:)
+ Z [EQ'(IJ:T|TU) log A . )

(er|20)

g(@y 1|2y, 20)

_ p(xT) po(@i—1|xt)
= Eq(as|zo) 108 Po(0|21)] + Eg(ar o) [ q(xr|xo) ] Z'Eq(m Fe-ilwo) |:1 s Q(Q’tflt‘mt: xp)
T
Eg(z, |z0) [108 Po(zo|z1)] — Dxr{g(zr|zo) || p(zT)) 7Z|Eq(m¢\mo) [Dxi(a(i—1]ze, o) || Pe(@e—1]2:e))]
reconstruction term prior matching term =2 denoising matching term
VB ERFREEET, LG -
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Understanding Diffusion Models

D D P M ,fjt1'b E 4:/3__\ gz 1|ae, o) = gl @1, o) g(@e—1|x0)

g(@t|zo)
_ Nize; oz, (1 — a) DN (@ 1; /Ee_120, (1 — @—1)I)
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(xy — \/::tht_l)g (21 — \/mmo}z (2 — \/C_!_smnj'z
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- it pe(xi—1|x:)
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Vo (1 —as_1)es +/a-1(1 — o)z (1 —ay)(1 - @t—l)I)

)

L1 ~ Q(mt—1|mtam0) O(N(mt—l;

. 1 — oy N 1—oy )
#q(mtvmfl) Eq(t)

BERM o BX, BTHEELEREER

T
Z[Eq mt|m0) [Dxr(q(@i—1]|®:, x0) || po(2i— 1\51%))]

t=2

denoising matchmg term

- Big—: po(xi—1|x:) HEBHHT

(1 —at)(l —ﬁit_l)
1 — oy

- BE=: AES q(xi_1|xe, o) R, BE oo(t) =

- BIEERTR He(T,l) FEE x, BEA xo KA, 5 A%
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1 )Y
BHAER DoV (5 pg, Bz) | N(y; py, By)) = 5 [bg 12| —d+tr(2,18,) + (1y — 1) "2 (g — p,x)]

al‘?;;HiH Dy (q(xi—1]|®e, x0) || Po(xi—1|T4))

|3 |

T
Z[E (@4 |z0) [DKL‘IQ(mt 1|$t;$0)|” po(Ti— 1\3%))]

denoising matching term

= arg min Dyp, (N (2113 g, By (1)) | N (@115 1o, B (£)))

= arg min — [log

2

3% (®)!
|32 (2)]

—d 4+ tr(B, (1) I, (1) + (o — pg) T () (1o — ng)]

1 _
= argmin ; [log 1 —d +d+ (ko — 1a) " Ea(t) ™ (ko — 1o)]

1

— argmin (0 — )", (6) (10 — )]

2
1

= arg;nin 5 [(p,g — )" (Jg(t)l)

= arg min
0

1
202(t)

[

(o — 1y)]

2
— 3]

o — &MY KL IR R E&RIMEIS(ER MSE loss
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vai(l —ap—1)Te + /ar—1(1 — ar)xo

1 —ay

EHSTE tg(s, o) =

Var(l —a_1)xs + a1 (1 — o) ey, 1) FERRBURIE E—2 x 70 ¢ 11T xo
1— o

Eiiﬂzt Ho (mt? t) =

arg min Dgy, (g(xi—1|Tt, o) || po(Ti—1]|Tt))

= argmmDKL(N(mz 15 g Bq (8) | N (@e-1; po, By (1))

— are min 1 [ Voi(l —ag—1)xs + /a—1(1 — o) Za (x4, t) B Voir(l —ag—1)ze + /a—1(1 — o) xo 2
B 202(t) 1—a, 1— &, \
B 1 Va1 (1 —o)de(ze,t)  Var_1(1— )z ||
= arg min - - -
2] 20’2(t) 1—Odt ].—O!g 9
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\/at—l(]- - Oft) o
— t —
argmln 2(t) 1—a (Zo(xt,t) — x0) ,
. 1 CEt_l(l — Clct)2 N 2
arg min 202(t) (1 — @)’ [”me(mt, t) — $0||2]

RS &MU KL BERIIEEIREN &AM x, TRIWESESHEZIERY MSE loss
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BRI = 2V 0 Voo Vimawm
ol o) = YIS VB (L 0 arg min Dt (a(w01 21, 0) | po @1 :)
V{1 = )t V(1 - o) Y = argmin D (N (213 st B4 (0) | A (2113 100, (1)
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(11— a_1)z+ (1 — :)@ _ . 1 L _ l—0ay . _ 1 1— oy 2
_ ven a x A « ar = a,rgam_m 203@) \/a_t:cg —m\/a_tEQ(mg,t) \/CTtmt + m\/aﬁ[] .
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53 A 2 o X — (€ 2}
B KU BUEROUEEIRES BAVURATEI MSE loss " s lle = oo+ VT=Gie. )|

Lsimple(g) = Et,xo,e [”6 — €p (\/@_fxo §E " 1= dte’t)||2]

poCxe-1|x) HUSHE po(en ) = — o o(en

(1 — at)(l — @t—l)

2
t) =
H% GI-q( ) 1—a, t>1
Algorithm 1 Training Algorithm 2 Sampling
1 repeat 1: xr ~N(0,1)
2: X0 r~ q(xo) 2: fort=1T,...,1do
i- t~ Ii}l(l(f](’li‘;l({lv T} 3. 2z~ N(0,1)ift > 1,elsez = 0
. Erv ) —a
5: Take gradient descent step on 4 X1 = ﬁ Xt — ﬁee(xt, t)) + 01z
VQ||€—69(-\/(35_¢X0+\/1—7&56,$)H2 5: end for
6: until converged 6: return x,
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Incorporating Diffusion into Audio Generation

AudioLDM 2: Learning Holistic Audio Generation with Self-supervised Pretraining

f=REY: LDM (Latent Diffusion Model)

« Diffusion Model Loy = Eg ean0,1),t [||'E — eo (x4, t)”%]

« Latent Diffusion Model Lipn = Eg(m),ewN(O,l),t [HE — €o(zt,1) ||%}

- Conditional Latent Diffusion Model Lipym = Eg(x),y,emN(O,l),t [”6—66 (2¢,t, 7o (3/))”%]
f

i SEUTEED ) (Conditioning
Diffusion Process emanti
Ma
( N Text

P Denoising U-Net €g Zr

Pixel Space L :
A Tg

Y @ < o

denoising step crossattention  switch  skip connection concat —

I entations | ynfaTn A\ Condition?
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Incorporating Diffusion into Audio Generation

AudioLDM 2: Learning Holistic Audio Generation with Self-supervised Pretraining

( Denoising U-Net €y

f=REY: LDM (Latent Diffusion Model)

Noise Predictor: U-Net + Cross-Attention + Time Condition

I

64 x 64 x 128

ConvBlock
i_l_i
v vV V¥V
K Vv Q

Transformer Block

_l_l xn
. v VvV V¥
. K Vv Q
Transformer Block

32 x 32 x 256
A\
9GZ X ZE X ZE

16 x 16 x 384
Y

P8E X 9L X 9|

}

i N L AudioMAE |
(] Residual Block o Features
[ ] Multi-head Attention o)
(| 1/0 Image ‘H’H e H‘H' A
N - .l =W pilz), K =W (), V =Wy
i ) Q= Q i(zt), =Wy’ -70(y), V=Wy’' -7(y)

Time-Condition: # @IS ERIBIINENEE S
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f=REY: LDM (Latent Diffusion Model)

CFG: Classifier Free Guidance

= ply|2)-p(z) y /& condition
p(y)

p(z |y)

= logp(z | y) = logp(y | z) + logp(z) — log p(y)

= V,logp(z | y) = V,logp(y | ) + V,logp(z),
Classifier

fERTERR . 1298 condition FER, MREEMERNFEEE
o I ERBEH 10% 35 condition B A
o HEIEMEISHISRAERYS | SERE: 3.5

_p(zy) - p)

= logp(y | ) = logp(z | y) +logp(y) — log p(x)
—> V:logp(y | z) = Vilogp(z | y) — Vzlogp(z).
Vzlogp,(z | y) = Vilogp(z) + vV logp(y | x).

Vilogp,(z | y) = (1 — ) Vazlogp(x) + vV logp(z | y)

EB (Xt,t;y) = (w + 1)69 (xtstay) — Wey (xt,t)

clip_model

text = "—2H"

text_embeddings - clip_model.text_encode(text)
empty_embeddings - clip_model.text_encode("")

text_embeddings - torch.cat(empty_embeddings, text_embeddings)
input = get_noise(...)

t tqgdm(scheduler.timesteps):

torch.no_grad():

noise_pred unet(input, t, encoder_hidden_states-text_embeddings).sample

noise_pred_uncond, noise_pred_text noise_pred.chunk(2)

noise_pred - noise_pred_text + guidance_scale (noise_pred_text noise_pred_uncond)

latents scheduler.step(noise_pred, t, latents).prev_sample
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f=REY: LDM (Latent Diffusion Model)

CFG: Classifier Free Guidance

CFG Scale: 7.0

CFG Scale: 13.0 CFG Scale: 20.0 CFG Scale: 30.0

CFG Scale: 9.0

CFG Scale: 11.0 &

« full face epic portrait, male wizard with glowing eyes, elden ring,
matte painting concept art, beautifully backlit, swirly vibrant color
lines, majestic, cinematic aesthetic, smooth, intricate

- ERVIFEKR, RCIRBISBMRIN, KREME, IHRERSZAK, =
THESE, TeRiRmHmENNEE&ES, #iF, BRES, X8, 2

CFG Scale: 13.0
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Seee RISk

f&R—: AudioMAE — Fifij)l

IRF, IRESEURIAE

TR B Encoder — FJlEREF, RESEURIFAZE (Phoneme Encoder BRIH)
&= GPT-2 — BtxTEUE)I14:, teacher-forcing Fill AudioMAE 434, {53 MSE loss

R
- VAE — Bl

4 LDM

7, FTIREN latent RAE, HESEURSAE
« LDM — 5GBisEIEx, £ GT AudioMAE )|

ENEX S|SB GPT-2 + LDM M prob-switcher, GT= 0.25, pred = 0.75

1
v‘ "I"H * Reshaped Pooled !
Patches \

&~N(1,0)

vV vV V¥
K v a

Transformer Block

. ConvBlock

Ixn
VoV vV
K v q

AudioMAE
Features

L

Patches'
S :-2----, | Language of Audio
AudioMAE n ! (Loa)
Encoder | * ﬁ » ] e % 'y, P

Time : g m E E-__;qt---'
———————————————————————— }},\ P :
A(): Audio to LOA Encoder 3 &3 i3 3 ~abred 1

1

| GPT-2 |

|

O 0000 0000 O I

| Linear Projection Heads | Prob.
- = === e " —————— - I Switcher

1 onemes 1 . 1

CLAP FLAN-T5 ImageBind I

U 220200 Encoder Lo e 1

o) ] 3 S )

Audio Text Transcription Image Video IMU :

M(:) : Any Modality to LOA Translator
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&

Train L(£.9)

G(+) : LOA to Audio Generator

Universal
Vocoder

VAE
Decoder

Train

Infer
: VAE
Encoder

L: 3
? : Infer E:—1=G(ft.f)§

Mel FilterBank
STFT

e e e = == —— = — —

Algorithm 1 Training

A0\ AudioMAE 454

O\ AudioMAE 44E

1: repeat

2: xo ~ g(xo)

3: t~ Uniform({1,...,7T})

4: e~ N(0,1I)

5: Take gradient descent step on
VgHc—:—eg(\/a}cqu\/l—dte,t)Hz -«

6: until converged

Algorithm 2 Sampling

1: X7 ~ N(O, I)

2:fort="T,...,1do

3: z~N(0,I)ift > 1,elsez =0

4 1= (xt - \};_‘"—a*tee(xae,t)) + oz <

5: end for

6: return xg

(@

BRI

C,

N MA/E& Condition — AudioMAE — LDM £k
KIF5E| z0 — VAE IkEM8/EHIE — Vocoder kSR
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#1848 : Regeneration Learning
BEN H:C —>x

o C: ZFMEEH condition BN
- x: BirEm

OfEEi H=G-M: C-> Y >x

e M:C—Y'
e G:Y' —x'

TR Y o ) ALERARTIN IR I
H=A4-G: x->Y->x'
2025/12/20

EHTF condition &£BHEIRAE  (LLM)
EhEFBARIR S, (Diffusion)

il

Language of Audio Calculation / Prediction ] Language of Audio (LOA) [ Self-supervised Pretrained Generation Model
G:Yy=z or G: Y =z

A:z—Yy, o M:C—Y,

1
M*‘ m Reshaped Pooled |
Patches | . Patches!

1
I

1

1

1

! y ! (LOA)
1| AudioMAE py 1

: Encoder »ﬁ» Y] Frea ® ¥y
1

o o

I GPT-2 |I
O o000 oOOooad O I

| Linear Projection Heads

———————— |
1 ™ Phonemes |
| CLAP | FLAN-TS , 1!  ImageBind I
U 2220 Enooger Ly e I L 1
o) = |3 N
Audio Text Transcription Image Video IMU :
| o o o o o o o o e e e e e e e e e e e e -
E\ M(-) : Any Modality to LOA Translator
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AudioMAE
Features

-

Vocoder

VAE
Decoder

: Train

Infer
VAE
Encoder

Mel FilterBank
STFT

G(-) : LOA to Audio Generator
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TABLE 1
PERFORMANCE COMPARISON ON THE AUDIOCAPS EVALUATION SET. AudioLDM 2 OUTPERFORMS PREVIOUS APPROACHES BY A LARGE MARGIN ON
BOTH SUBIJECTIVE AND OBJECTIVE EVALUATION.

Model Duration (h) Param FAD]| KLJ| CLAP (%)t OVL 1 REL *t
GroundTruth - - - - 25.1 4.04 4.08
AudioGen-Large 6824 1B 1.82 1.69 - - -
Make-an-Audio 3000 453 M 2.66 1.61 - - -
AudioLDM-Large-FT 9031 39M  1.96 1.59 - - -
AudioLDM-M 9031 416 M 4.53 1.99 14.1 3.61 3.95
Make-an-Audio 2 3700 937 M 2.05 1.27 17.3 3.68 3.62
TANGO 145 866 M 1.73 1.27 17.6 3.75 3.72
AudioLDM 2-AC 145 346 M 1.67 1.01 24.9 3.88 3.90
AudioLDM 2-AC-Large 145 7T12M 142 0.98 24.3 3.89 3.87
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Incorporating Diffusion into Audio Generation

AudioLDM 2: Learning Holistic Audio Generation with Self-supervised Pretraining

TABLE III
PERFORMANCE COMPARISON ON THE MUSICCAPS EVALUATION SET.
THE SUPERSCRIPT | INDICATES RESULTS REPRODUCED USING PUBLICLY
AVAILABLE IMPLEMENTATIONS. THE OPEN-SOURCE VERSION OF
MUSICGEN-MEDIUM EXCLUDES VOCAL SOUNDS, RESULTING IN TABLE IV
SLIGHTLY INFERIOR PERFORMANCE COMPARED TO THE ORIGINAL

REPORT [32]. ALL GENERATED AUDIO CLIPS WERE RESAMPLED TO TEXT-TO-SPEECH PERFORMANCE EVALUATED ON THE LJSPEECH TEST

16KHZ PRIOR TO EVALUATION. SET.
Model FAD| KLl CLAP (%)t OVLT RELT Model Mean Opinion Score
GroundTruth - - 25.3 3.82  4.26
Riffusion 14.80  2.06 19.0 - - GroundTruth 4.63 +£0.08
Mousai 7.50  1.59 . . - GT-AudioMAE 4.14 4+ 0.13
MeLoDy 5.41 - -
Mooy 70 ] ] ] - FastSpeech2 3.78 £ 0.15
MusicGen-Medium 3.4 1.23 32.0 - - Audiol. DM 2-LJS 3.65 + 0.21
MusicGen-Medium!  4.89  1.35 29.1 3.37  3.38 . . ' )
AudioLDM.M" 320 199 36.0 203 395 AudioLDM 2-LJS-Pretrained 4.00 £+ 0.13
AudioLDM 2-MSD 447  1.32 29.4 3.41  3.30
AudioLDM 2-Full 313 1.20 30.1 334 354
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Incorporating Diffusion into Audio Generation

Comparative Study
Text-to-Audio: Make-an-Audio 1/2

U-Net 0

Zt—1 2o G

Text-to-Music: MusicLDM
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Incorporating Diffusion into Audio Generation

Comparative Study
« Text-to-Audio: TANGO

growling, %’I% FLAN-T5

A dog is barking and
as a siren is blaring

—F_Legfnd*“

 Inference only Train only Train + Inference Frozen Params. Trainable Params. :

Figure 1: Overall architecture of TANGO.
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Final Fantasy: Any-to-Any Generation

NEXT-GPT: Any-to-Any Multimodal LLM
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