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离散表征 连续表征

自回归建模
(AR)

• VALL-E (s1) / Speech-X

• Spear-TTS/AudioLM

• Make-A-Voice

• AudioLDM2 (s1)

非自回归建模
(Diffusion/
MaskGIT/

Flow-Matching/
…)

• SoundStorm

• NaturalSpeech3

• MobileSpeech

• UniCATS

• NaturalSpeech2

• StyleTTS2

• VoiceBox



FACodec: Attribute FActorized Speech Codec
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Neural Audio Codec

Zero-Shot TTS with Factorized Codec and Diffusion Models2025/12/20

• 出发点

• 音频编解码：音频的低码率传输

• 音频生成任务：离散化表征更适合一些模型

• 现有工作的不足

• RVQ 的残差建模，并不具有解耦的效果

• 更新的工作：局限于语义和声学两方面分解

• 表征的粒度仍然不够细化，可控性差

• 声学的细节耦合在一起：音色/韵律/背景音…

• 问题：如何得到更适合于语音生成任务、更可控的 Codec？
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FACodec: Factorizing Speech Attributes

Zero-Shot TTS with Factorized Codec and Diffusion Models2025/12/20

• 保证各属性解耦效果的四大方法

1. VQ（Bottleneck）: 信息瓶颈，控制保留的信息量

2. Supervision: 不同模块各司其职

3. GRL（梯度反转）: 进一步去除各属性模块的混淆

4. Detail Dropout：对 detail 模块的随机 dropout

• FACodec: 将语音信息分解为四大属性

• 韵律（p）、音色（t）、内容（c）、声学细节（d）

• 优点：可控性更好、建模难度更低（分而治之）

• 难点：如何保证各部分属性信息的解耦效果？
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FACodec: Factorizing Speech Attributes

Zero-Shot TTS with Factorized Codec and Diffusion Models2025/12/20

• 方法一：Information Bottleneck （ VQ）

• Improved VQ（DAC）：

• VQ 在很低的维度（8 维）表征空间进行

• 实践效果：提高 Codebook 的利用率

• 不同特性使用了不同层数的 RVQ

• prosody: 1 层

• content: 2 层

• detail: 3 层

• 每层 VQ 的 codebook size 是 1024

• 简单对应成：具有 6 层 VQ 的 Codec

• 方法二：Supervision 监督学习

• prosody: 

• 帧级别的 pitch (norm) 回归预测

• 代码中实际还预测了 V/UV 的二分类任务

• content: 强制对齐后，帧级别的 phone 分类

• timbre: speaker embedding 预测 speaker-id（代码实际没有使用）
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• 方法三：GRL 梯度反转

• 问题：只靠 supervision 无法保证各模块内信息的绝对解耦

• 比如：预测 phone 的模块，可能不只建模了 content，也建模了音色或者韵律

• speaker-GRL: GRL 增加分类层预测 spk 标签，但梯度反转

FACodec: Factorizing Speech Attributes

• 方法四：Detail Dropout

• 出发点：prosody + content + timbre 原则上足够恢复基本语音信息，只不过音质细节上不佳

• 训练过程中，以一定概率随机 mask detail 的输出，强制从其他模块的输出也能恢复基本的波形
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• 模型结构细节

• 音频采样率 16kHz, 降采样倍数 200，每秒 80 帧

• Encoder / Decoder: 与 DAC (descript audio codec) 相同（加入了 Snake 激活函数）

• Timbre Extractor: 4 层 Transformer, 输出结果 average pooling 得到 speaker embedding

• Speaker embedding 以  Conditional Layer Norm 的方式加入到 Decoder 中

• 每个任务，Supervision 和 GRL 的 Predictor: 多层卷积结构，GRL 梯度反转系数为 1.0

• GAN 的判别器：MPD （多周期）、MSD（多尺度 STFT）

FACodec: Factorizing Speech Attributes
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• 训练细节

• 损失函数

• VQ: 重构 loss (多尺度 mel loss) + codebook loss + commitment loss

• Supervision: phone loss, f0 loss

• GRL: GRL-phone loss, GRL-f0 lss, GRL-spk loss

• GAN: GAN loss + feature matching

• 训练数据：LibriLight 数据集；训练配置：8 卡 V100，800k steps

FACodec: Factorizing Speech Attributes

9
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• FACodec 效果评测

• 波形重建

• Zero-Shot VC

• source 音频：待转换的原始音色的音频，使用 FACodec 抽取 prosody/content/detail

• prompt 音频：目标音色的参考音频，使用 FACodec 的 timbre extractor 抽取 speaker embedding

• 使用 FACodec 的 Decoder 解码出 target 音频

FACodec: Factorizing Speech Attributes

Sim-O: 与 Original Prompt 之间的音色相似度

10

• demo 音频：https://speechresearch.github.io/naturalspeech3

• 试用页面：https://huggingface.co/spaces/amphion/naturalspeech3_facodec

https://speechresearch.github.io/naturalspeech3
https://huggingface.co/spaces/amphion/naturalspeech3_facodec
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• 核心方法消融实验

• 所有 VQ 中是否加入 bottleneck

• Zero-shot Voice Conversion 实验

• Detail 模块的重要性（提高合成音质）

FACodec: Factorizing Speech Attributes
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Zero-Shot TTS with Factorized Codec and Diffusion Models2025/12/20

• FACodec 实战效果：VALL-E

FACodec: Factorizing Speech Attributes

• Sim-O: 与 original prompt 之间的音色相似度

• Sim-R: 与 reconstructed prompt 之间的音色相似度
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phone 序列

prosody code
（1 层）

content / detail code
（5 层）

VALL-E + FACodec



Comparative Analysis: NANSY++
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对比项 FACodec NANSY++

分解属性

• Prosody

• Content

• Timbre

• Detail

• Pitch

• Linguistic

• Timbre

解耦方案

• Information-Bottleneck

• Supervision

• GRL

• Structured Dropout

• Information-Perturbation

• Contrastive Learning

可借鉴点
• 解耦更多属性

• 各属性的表征离散化
• 解耦不需任何要监督信息

注：Speech-Resynthesis (2021) 等论文同样采用解耦的思想，

只不过对各属性解耦方法有所不同，详见龙哥 VC 的 PPT



Zero-Shot TTS with Factorized Diffusion Models
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Zero-Shot TTS with Factorized Codec and Diffusion Models2025/12/20

NaturalSpeech3: Factorized Diffusion Models

• Zero-Shot TTS 问题简化：

• 基于 FACodec，生成一条音频只需获得 prosody/content/detail/timbre 四个属性即可

• timbre 可以直接从目标说话人的音频抽取得到

• Zero-Shot TTS 转换为对三个属性 codec 的预测（分而治之）

• 优势：三个属性解耦之后，支持使用不同的 prompt 

• 问题定义：

• 基于「音素序列」生成「多层 codec 」的预测任务

• 候选模型：VALL-E, Spear-TTS/SoundStorm…（具备 prompt 能力即可）

• NaturalSpeech3 采用一种支持 prompt 的『新』模型

• Discrete Diffusion
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Zero-Shot TTS with Factorized Codec and Diffusion Models2025/12/20

NaturalSpeech3: Factorized Diffusion Models

• 模型结构初探

Phoneme-Level Frame-Level
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NaturalSpeech3: Factorized Diffusion Models

• Discrete Diffusion （离散空间的 Diffusion）

Bidirectional Conformer

+ + + + + + +

prompt code target code

input condition C

的位置表示被替换为 mask token
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前向过程：mask 一定比例的 token（类比加噪）

反向过程：还原一部分被 mask 的 token（类比去噪）

0 时刻状态：     真实的 token 序列

T 时刻状态：   完全被 mask 的序列（T 是预先设置的 step 数）

t 时刻状态：

前向过程：加噪策略

     

反向过程：（模型实际建模）

• 理论上从                                  分布中采样得到             ，但          实际未知

• 使用模型对                             进行建模

• 增加额外的 prompt 和输入条件 C，实际建模的是

随着时间 t 增大，被 mask 的 token 比例增大，直到时间 T，σ(T)=1



Zero-Shot TTS with Factorized Codec and Diffusion Models2025/12/20

NaturalSpeech3: Factorized Diffusion Models

Bidirectional Conformer

+ + + + + + +

prompt code target code

input condition C

上一页结论：考虑 prompt 和输入条件 C，实际建模的是

推理过程（从        生成                  ）

• 已知      ，先从   中采样得到

• 将          中置信分数最低的        个 token 重新  mask

• 注意：          中没有被重新 mask的位置，置信分数为 1（避免已经生成好的 token 被重新 mask）
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• Discrete Diffusion （离散空间的 Diffusion）

训练目标

Discrete Diffusion?    MaskGIT/SoundStorm!
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From MaskGIT to Discrete Diffusion

19
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From MaskGIT to Discrete Diffusion
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• 第一阶段：VQ-GAN 训练 Image Tokenizer

• 第二阶段：Masked Visual Token Modeling（MVTM）

• 训练过程：

• 先从 0 ~ 1 之间选择一个概率值（mask schedule）

• 从 Y 中随机选择 个 token，进行 mask

• 训练目标是预测被 mask 的 token

• 推理过程：迭代式并行解码

• 目标：所有 token 均被 mask → 预测出每一个被 mask 的 token

• 一步解码：与训练过程不一致，效果不很好

• 迭代式解码

• 对被 mask 的 token，预测概率分布

• 每个 token 从概率分布中采样（采样到的结果对应的概率为置信分数）

• 根据时间 t 和 mask schedule, 计算下一步被 mask 的 token 个数 n

• 根据置信分数排序，选择分数最低的 n 个 token 进行 mask

• 对未被 mask 的 token，置信分数为 1（之后不再改变）

• 重复以上步骤
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From MaskGIT to Discrete Diffusion
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• 关于 masking schedule 的讨论

• mask schedule 在训练和推理阶段都会用到

• 训练阶段：随机选择 r，模拟不同 mask 比例下的情况（不用考虑推理时有多少步）

• 推理阶段：

• 采样总步数为 T：0 时刻表示完全 mask，T 时刻生成完毕

• mask 的比例随着采样步数 t 的增加，逐渐变小（直至最后一步不再 mask）

• Mask schedule function 需要是从 0 到 1 的单调递减函数

• 几种不同的 mask schedule function

• Linear function

• Concave function: cosine, square, cubic, exponential（初期下降慢，后期下降快）

• Convex function: square root, logarithmic （初期下降快，后期下降慢）

cosine schedule is the best
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From MaskGIT to Discrete Diffusion

• MaskGIT is better and faster than VQ-GAN

• Better: 使用了双向的 context 信息

• Faster: 从 AR 变为了 NAR
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From MaskGIT to Discrete Diffusion

• Discrete Diffusion (General Case)

23

𝑥𝑡

𝑥𝑡−1

Forward PassReverse Pass

表示每个位置的类别，假设类别总数为 K

用转移在矩阵 𝑸𝒕 表示 forward pass 中，上一时刻 𝑡 − 1 到下一时刻 𝑡 在 K 个不同类别之间的转移概率矩阵

• 转移矩阵为 K × K

• 转移概率计算

• 在时间 t 角度上，增加马尔可夫性假设

从 0 时刻到当前 t 时刻的转移矩阵
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From MaskGIT to Discrete Diffusion

• 不同的转移概率概率矩阵

• 1. Uniform Discrete Diffusion

• 2. Uniform Diffusion with absorbing state

• 除了 K 个类别之外，增加 [MASK] 作为吸收状态

• BERT:  80% mask, 10% 替换为其他 Token, 10% 保持不变

• 结论：BERT(MLM) 是一种特殊的离散 diffusion

• 3. Mask Transition Diffusion

• 第 2 种情况的特例，只允许 mask 和保持不变

• 结论：MaskGIT 是一种特殊的离散 diffusion

• 4. Auto Regressive Models are Discrete Diffusion Models…
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From MaskGIT to Discrete Diffusion
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• 不同的转移概率概率矩阵

• 1. Uniform Discrete Diffusion（U）

• 2. Uniform Diffusion with absorbing state （MU）

• 除了 K 个类别之外，增加 [MASK] 作为吸收状态

• BERT:  80% mask, 10% 替换为其他 Token, 10% 保持不变

• 结论：BERT(MLM) 是一种特殊的离散 diffusion

• 3. Mask Transition Diffusion（M）

• 第 2 种情况的特例，只允许 mask 和保持不变

• 结论：MaskGIT 是一种特殊的离散 diffusion

增加 Uniform Diffusion

• 建模目标更难，帮助更好的捕捉 context 信息，而不仅仅是关注 mask token

• 采样时如果某一步局部出现错误的结果，也能减少错误累积



训练流程（coarse-to-fine）

• 1. 对每一条音频，随机采样一个 𝑡 ∈ { 1, 2, ..., 𝑇 }

• 𝑇 表示输入序列最大长度

• 0~ 𝑡 作为 prompt； 𝑡 ~ 𝑇 作为训练的 target

• 2. 随机采样一个 q-level ~ {1, 𝑄}    (content 𝑄 = 2; detail 𝑄 = 3)

• 3. 针对 q-level 的 token 构造 0-1 mask 序列

• 4. mask 操作

• prompt 部分：所有 Q 层 token 都不 mask；

• target 部分：

• q-level 当前层：根据生成的         ， 对 token 进行 mask

• q-level 以下：所有 token 全不 mask

• q-level 以上：所有 token 全部 mask

• 5. 训练 Loss 使用交叉熵，只针对 q-level 被 mask 的 token 进行计算

SoundStorm NaturalSpeech3

Zero-Shot TTS with Factorized Codec and Diffusion Models2025/12/20

NaturalSpeech3: Factorized Diffusion Models

26

• 多层 RVQ Discrete Diffusion

       类比 SoundStorm
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NaturalSpeech3: Factorized Diffusion Models
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• 模型结构细节

• Phoneme Encoder: 6 层 Transformer, 8 head

• Phone-Level Diffusion (duration/phone-level prosody): 共享的 6 层 Transformer, 8 head

• Frame-Level Diffusion (prosody/content/detail): 共享的 12 层 Transformer, 8 head

Phoneme-Level Frame-Level
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NaturalSpeech3: Factorized Diffusion Models

• Factorized Diffusion 相比于 SoundStorm 的改进点
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• 训练时

• 15% 的概率不使用 prompt 对 masked token 进行预测

• 推理时

• 不使用 prompt， unconditional 生成

• 使用 prompt， conditional 生成

• 两次生成在 logits 上进行插值

• CFG with Rescale

• 改进二：Classifier-Free Guidance (CFG) with Rescale

• 改进一：Time Embedding

• Factorized Diffusion Transformer 的每个 LayerNorm 替换为 AdaCLN

• Time embedding 作为 CLN 的 condition
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NaturalSpeech3: Factorized Diffusion Models

• 模型推理

• phoneme-level prosody diffusion: 4 × 2 = 8 次采样

• duration diffusion: 4 次采样（不加 CFG）

• frame-level prosody/content/detail 共 6 层

• 每层 4 × 2 = 8 次采样（增加 CFG）

• 总采样次数：8 + 4 + 6 × 8 = 60 次

• 生成音频：6 层 Codec + 目标说话人的参考音频提取的 timbre embedding，通过 FACodec 重建音频

Phoneme-Level
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• NaturalSpeech3 v.s. Spear-TTS s1 + SoundStorm

• Phone-Encoder + Duration Diffusion + Length Regulator ≈ SpearTTS s1

• Prosody+Content+Detail Diffusion ≈ SoundStorm
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NaturalSpeech3: Factorized Diffusion Models

• 训练数据

• LibriLight: 6 万小时 16kHz 的英文有声书数据

• Speaker 数目：7000+

• Phone 序列获取：内部 ASR + g2p

• Duration 获取：内部强制对齐工具

• 评测数据

• LibriSpeech test-clean：40 个 speaker，每人一条测试音频

• RAVDESS 英文不同情感语音数据集：24 个 speaker

• 8 种情感，每种情感两个强度（normal/strong），论文选择的 strong 强度下的 8 个情感

• 指标一：音色相似度

• SIM-O / SIM-R：与原始 prompt (O) / FACodec 重建 prompt (R)之间的 WavLM-TDNN 音色相似度

• 指标二：UTMOS： 音质评价指标

• 指标三：WER：开源英文 ASR 模型

• 指标四：韵律相似度

• MCD（梅尔倒谱系数之间的衡量）

• MCD-Acc（对合成音频进行情感分类，与 prompt 音频的情感类别之间的 top-1 准确率）
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NaturalSpeech3: Factorized Diffusion Models

• NaturalSpeech3 实验结果

• 音色相似度与可懂度/稳健性

• 韵律/情感相似度
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NaturalSpeech3: Factorized Diffusion Models

• 消融实验

• - factorization: 使用普通的 SoundStream Codec + duration diffusion + soundstream discrete diffusion

• - cfg: 不增加 CFG，但为了可比性，每层采样的次数翻倍，仍然保持总采样次数为 60 次

• 韵律表征的有效性

• 使用前 20 维梅尔特征作为 prosody VQ 的输入
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NaturalSpeech3: Factorized Diffusion Models

• 扩充数据量和参数量的实验

• 模型推理时间对比
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NaturalSpeech3: Factorized Diffusion Models

• 补充细节：Duration Diffusion with Phoneme-Level Prosody

NaturalSpeech3 额外训练了一个 phone-level 的 prosody diffusion

• 训练时，phone-level prosody code 的获取

• 从目标音频抽取 prosody VQ 前的 embedding

• 根据对齐结果进行 phone-level pooling，从 codebook 中抽取 prosody code

• 模型一：phone-level prosody diffusion

• 输入：phoneme-encoder 的输出 + prompt 的 phone-level prosody code

• 输出：target 区域的 phone-level prosody code

• 模型二：duration diffusion

• 输入：

• phone-encoder 的输出

• prompt 的 duration code

• 预测得到的 target 区域的 phone-level 的 prosody code

• 输出：target 的 duration code
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NaturalSpeech3: Factorized Diffusion Models

• Duration diffusion 模块的消融实验

• Generation ablation: 4 步生成 →  1 步生成

• Objective ablation: CE 分类 loss → L2 回归 loss

• Conditioning ablation: 额外输入 phoneme-level prosody → 不加入 PL-prosody

• Prompting ablation: 有 prompt → 不加入 prompt
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Takeaways

• 从建模的角度

• 理论的统一：Discrete Diffusion 包含了 MaskGIT/SoundStorm

• Discrete Diffusion 作为 AR 的替换方案（VQ-Diffusion > MaskGIT > VQ-GAN）

• Mega-TTS2: duration/prosody LLM 升级为 discrete diffusion

• SoundStorm 替换为更一般情况的 Discrete Diffusion: https://github.com/yangdongchao/SoundStorm

• SoundStorm 可以参考的优化点

• Codec 无缝替换为 FACodec

• 转移矩阵将 uniform 与 mask 相结合：lucidrains 开源代码已支持（BERT Mask）

• Classifier-Free Guidance on MaskGIT models （AR Models?）

• 从解耦的角度

• Information Bottleneck for Prosody VQ（Mega-TTS2）

• 增加 supervision 和 GRL 增强解耦的效果

• 其他：RAVDESS 情感数据集

36

https://github.com/yangdongchao/SoundStorm
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Comparative Analysis
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• MobileSpeech



Zero-Shot TTS with Factorized Codec and Diffusion Models2025/12/20

Comparative Analysis

38

• UniCATS

• Semantic token: vq-wav2vec + k-means 
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