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- Backbone
« BEFU\KUER: espnet B9 conformer
- SIEFAHGEE: SenseVoice-Large
- VQ tBXEE
- VQ EBHEENE 6 B Encoder Zj5
« VQ B9 codebook size = 4096 (BBE, A RVQ)
- I 6 = Encoder + VQ £, RIAI{E/9 Tokenizer

Model ‘ dev_clean test_clean test_other Whisper-L-V3 | SenseVoice-L | ~S° tokens
Testset | wiolid w/lid | wiolid w/lid | wiolid w/lid

Conformer 2.62 2.89 6.57 zh-CN 12.82 12.55 8.76 8.68 12.24  12.06

Confonner-VQ 3.13 318 7.56 en 13.55 9.39 9.79 977 | 1543 15.38

Table 6: The evaluation on S® tokens’ capability to
preserve semantic information. We employ word and
character error rates for zh-CN and en languages on the
Common Voice benchmarks.

Table 5: Impact of inserting vector quantization on
speech recognition in terms of word error rate (%).
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1. Text Encoder: i& text token 5 speech token J35ZIiBEREI=SE]

2. Speech Tokenizer: S® Tokenizer

3. Text-to-Token LM: decoder-only LLM

4. CFM: Conditional Flow Matching (ABEEXIFFFUMMELR )
5. HiFiGAN: f8/R4FIE — IR
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* ijllﬁ#;&rﬁyu [@a v, {yu}ue[l:U] ) @7 {ul}lE[lzL] ) @}
« X7 Tokenizer

Y = {yu}ue[l;U] Y = TextEncoder(BPE(Y))
*  iJll% Loss RXiE Speech Token
L+1
Liyy=———— lo
LM = L 1 Z g q(p)
Settings ‘ Tiny Normal
Text Encoder
Layers 6 6
Attention Dim. 512 1,024
Attention Heads 8 16
Linear Units 2.048 4,096
Language Model
Layers 12 14
Attention Dim. 512 1,024
Attention Heads 8 16
Linear Units 2.048 4,096

Table 4: Details of model architecture settings in the
tiny and normal Cosy Voice models.
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Matcha-TTS: Optimal-Transport Conditional Flow Matching

VIIRSEIRDTE . FNVEIESDT  do(X) ~ po(X) = N(X;0,1)
HEEES®H:  o(X) A p(X) Ei
BINGEF:
1. speech token
2. speaker embedding v
3. masked HE/RIEE (mask &N : BEHIEN—ERE A 0)
FEEETF diffusion: J)IERE =R, HEEER
EfthuH
« cosine scheduler
CFG (classifier-free guidance)
« gk 20% BOEEER, BENAE 3 #hARR, FIAREM flow
- MERE: 4 flow FOHESAY flow ZMtHEE
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HiFTNet A9{E{E

NSF: Neural Source Filter
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+ 100 Snake B, {BI¥H BigVGAN HHREIPK
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Model Dataset CMOS (p-value)+ MCD| RTF| RAM|
Ground Truth LISpeech  —0.06 (p = 0.396) — — —

HiFTNet LJSpeech — 2.567  0.0057 0.90GB
iSTFTNet LISpeech +0.64(p <10~7)  2.820 0.0031 0.77GB
HiFi-GAN LISpeech +0.19(p =0.028) 2.816 0.0043 0.75GB
Ground Truth test-clean  —0.21 (p = 0.033) — - —

HiFTNet test-clean — 2892 @ —"— "
BigVGAN-base test-clean +0.21 (p =0.001) 3.079 0.0159 0.90GB
BigVGAN test-clean  —0.05 (p =0.552) 2.656  0.0243 1.52GB
Ground Truth test-other  —0.10 (p = 0.189) — — —

HiFTNet test-other — 3.690 —_r— ="
BigVGAN-base test-other +0.17 (p =0.022) 3892 —"— —"—
BigVGAN test-other ~+0.12 (p =0.354) 3.18 —"— —"—
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Figure 4: A semantic diagram of Cosy Voice models.
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INgEé—: Zero-Shot In-Context Learning
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INgEZ: Rich Generation with Instruction

Ige: B BAN AL, EHENIEEIE ST

- speaker identity, speaking style (emotion/gender/pitch/speed)
« laughter, breaths, speaking while laughing. 1§E1EEARY emphasis
SEIL S

- {#EH instruct ZEEAIEERE finetune CosyVoice EAtitEEY

- finetune B, A0 speaker embedding

Speaker Identity

1. Selene ’Moonshade’, is a mysterious, elegant dancer with a connection to the night. Her movements are both mesmeriz-
ing and deadly.<endofprompt>Hope is a good thing.

2. Theo ’Crimson’, is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with
impulsiveness. <endofprompt>>You don’t know about real loss.

Speaking Style
1. A happy girl with high tone and quick speech. <endofprompt>The sun is shining brightly today.
2. A sad woman with normal tone and slow speaking speed.<endofprompt>I failed my important exam.

Fine-grained Paralinguistics

1. Well that’s kind of scary [laughter].

2. I don’t think I over eat yeah [breath] and um I do exercise regularly.

3. Well that pretty much covers <laughter>the subject</laughter> well thanks for calling me.

4. The team’s <strong>unity</strong> and <strong>resilience</strong> helped them win the championship.
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i’"ﬁ%&?&fgg Language  Duration (hr)

o INEUEE: LibriTTS ZH 130,000
N s EN 30,000

° K =N NiaZ 1 BE= 5= p
k&ﬁEE 7(&1‘;571:. I:%H:Ex Yue 5.000
- S5HMEE, b AFE JP 4,600
KO 2,200

S €101 S Y
. Speech detection Table 2: Hours of CosyVoice training data across lan-
guages in the large-scale experiments.

« SNR estimation

« Speaker diarization Type Duration (hr)
. Speech Separation Speaker Identity 101
Speaking Style 407

* Pseudo Label Generation Fine-grained Paralinguistics 48

« Force Alignment . o ' . o
Table 3: Duration statistics of instruction training data

by type.
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B8RET

-  WER: #3F Paraformer-CN, 3 Whisper-Large v3

- E8HME (SS) : ERes2Net itH prompt SEMEMZBRIRABIAE

- HR: GRERS prompt BZERNESHEMUE, ATESE
prompt S ARYZEEIE

=piS]

Model WER (%) #Ins.&Del. SS

Original 2.66 92 69.67

ChatTTS 8.32 441 -

CosyVoice 2.8940.18 88.60+3.88 74.304+0.15
+ 5x re-ranking 1.51 47 74.30

Table 8: The comparison of original and CosyVoice
generated speeches on the LibriTTS test-clean set in
terms of word error rate (WER) and speaker similar-
ity (SS). “+” joins the mean and standard deviation for
each evaluation metric. Whisper-Large V3 is employed
as the ASR model.

Model CER (%) #Ins.&Del. SS

Original 2.52 25 74.15

ChatTTS 3.87 111 -

CosyVoice 3.8240.24 24.44224 81.5840.16
+ 5% re-ranking 1.84 11 81.58

« Re-ranking: 45k 5 %%, 58 WER &{EB—RIENEHIES HITERTEN

Model | Text token Speech Token WER (%) #INS+DEL #SUB SS

Original - - 3.01 66 200 69.67
VALL-E (Wang et al., 2023) Phone Encodec 18.70 342 1312 53.19
UniAudio (Yang et al., 2023) Phone Encodec 8.74 254 519 47.56
SpearTTS (Kharitonov et al., 2023) Phone Hubert 6.14 133 410 51.71
Exp-1-LibriTTS Phone Hubert 7.41 325 409 67.85
Exp-2-LibriTTS Phone S3 5.05 122 325 67.85
Exp-3-LibriTTS BPE,,, Se 3.93 108 239 67.85
Exp-4-LibriTTS BPE S5° 4.76 134 287 65.94
Exp-4-Large-scale BPE S5 317 96 184 69.49

Table 7: Comparison with other TTS models on the LibriTTS test-clean set in terms of content consistency and
speaker similarity (SS). Non-autoregressive ASR model, Paraformer-en, is employed for fast evaluation.

2025/12/20
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Table 9: The comparison of original and CosyVoice
generated speeches on the AISHELL-3 test set in terms
of character error rate (CER) and speaker similarity
(SS). Paraformer-zh is employed as the ASR model.
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B = HITETE

- TBXEE: 100 £5ERHETERIA; 6 fERE: happy, angry, sad, surprised, fearful, disgusted
- BMAEI: Happy.<endofprompt>Content Text

- JFEEHR: emotion2vec FREEBIERG MM

Model Happy Sad Angry Surprised Fearful Disgusted

CosyVoice-base 1.00+£0.00 0.45+0.05 0.59+0.03 0.26+0.02 0.88+0.01 0.46+0.06
CosyVoice-instruct  1.00+0.00 0.984+0.02 0.83+0.04 0.64+0.03 0.87+£0.03 0.93+0.02
w/o instruction 0.98+0.01 0.77+0.04 0.49+0.12 0.284+0.06 0.83+0.04 0.45+0.16

Table 10: Comparison of emotion control accuracy between CosyVoice-base-300M and Cosy Voice-instruct-300M.
“+” joins the mean and standard deviation for each evaluation metric.

Si= 4=

TS E?ﬁﬁﬂgﬁlﬂ' I.E Training Data dev_clean dev_other test_clean test_other
Librispeech 2.77 5.84 2.79 5.97
Syn on LS text 2.79 6.37 3.00 6.59
Librispeech + Syn on LS text 2.44 5.52 2.56 5.68
Librispeech + Syn on LS text x2 2.51 5.23 2.68 5.26
Librispeech + Syn on LS, MLS text  1.93 4.43 2.04 4.53
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2 115374 ][z spk-emb HHERER Tokenizer Decoder Vocoder Vocoder A\
2305.07243 2023.05 iz Mel-VQ DDPM/DDIM Univnet mel
- 2024.01 A Hubert VITS HiFiGAN embedding
Base-TTS 2402.08093 2024.02 Bz spk-emb ey HiFIGAN £ BigVGAN embedding
- 2024.05 Az Mel-VQ Decoder Vocos mel
- 2024.05 iz Mel VQ VITS HiFiGAN embedding
Seed-TTS 2406.02430 2024.06 Az R BB TS DiT R BB TS embedding
2406.04904 2024.06 HHE: perceiver Mel-VQ HiFiIGAN embedding
CosyVoice 2024.07 HHEEA spk-emb S3-Tokenizer Flow-Matching HiFTNet mel
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