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Moshi ≈ Llama + Speech-Tokenizer + UniAudio + Mini-Omni



Background

Spoken Dialogue 传统方案

• 级联系统：VAD(EOQ) + ASR + LLM + TTS

• 缺点一：各模型是串行依赖关系，级联系统累计 latency 长达几秒

• 人类自然对话 latency平均为 230 ms（一般 200~500 ms）

• 降低 Latency：模型结构 / 工程加速

• 结论：仍然难以在保证对话效果的同时，达到与人类自然对话可比的 Latency

• 缺点二：文本作为 ASR → LLM → TTS 的媒介，丢失了语音模态的情绪/口音/环境等信息

• 缺点三：很难考虑到 interrupt/overlap/back-channel 等 arbitrary dynamics

• 人类自然对话的 arbitrary dynamics 占比 10-20%

https://github.com/huggingface/speech-to-speech

级联系统降低 Latency

• VAD/ASR/TTS 使用流式模型，因果模型结构或降低对右侧 context 的依赖

• 流式 VAD 模型：endpointing 检测时缩短静音时长的阈值

• 流式 ASR 模型：delay-penalty；Prefetch 提前将识别文本送入 LLM

• LLM 流式生成：提前根据 Prefetch 的 ASR 结果生成响应文本

• 流式 TTS 模型：字/词级别流式；减少首字合成 latency，流式输出语音流
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Background

改进方案：Generative Speech/Speech-Text LLM
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• Unconditional 生成

• 基于 3s prompt Conditional 生成

论文 主要工作 训练数据模态

GSLM 离散化后的语音 token 训练 LM audio-only

pGSLM GSLM 基础上，输入和输出均增加离散化后的 

duration/pitch 韵律信息

audio-only

TWIST 使用文本 LLM 初始化模型参数，对比了不同参数

量的 LLM 的效果

audio-only

Spirit-LM

VoxtLM/SUTLM

语音和文本对齐，训练时speech, text, speech-

text 混合的方式训练 LLM

audio-text

USDM 语音和文本统一的 LLM，增加 <correspond>和

<continue>两种特殊 token

audio-text

SpeechGPT

SpeechGPT-Gen

类似 GSLM，SpeechGPT-Gen 引入了 

FlowMatching 提高 TTS 语音生成能力

audio-text

Mini-Omni

Llama-Omni

支持流式生成语音，降低 Latency

但是没有全双工能力

audio-text

• 仍是单路语音流的对话模型，不支持全双工应用

• 大部分没有实现流式生成/实时交互的能力

Spirit-LM

GSLM



Overview: Moshi Architecture

Multi-Stream Speech-to-Speech Transformer Model

• Helium: Text LLM

• Mimi: Neural Audio Codec

• RQ-Transformer: Streaming and Hierarchical Model

• 特点：支持多路输入输出（全双工），支持流式语音生成（对话模型）
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Helium: Text Large Language Model as Backbone
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Helium: Text LLM as BackBone

模型结构：Helium 与 Llama 1/2 的对比

• PreNorm：RMS Norm（Llama）， 位置编码：RoPE（Llama）

• context length = 4096 (Llama1: 2048, Llama2: 4096)

• 使用 Flash Attention（Llama 1/2）

训练配置

• Tokenizer: 与 Llama 策略相同

• SentencePiece：主要针对英文，token 词表大小： 32000

• 数字分割策略：将数字拆分为单个数字

• 减少了稀有数字组合对模型训练的影响，同时保留数字信息

• 字节回退策略：在分词失败时，通过退回到字节级编码

• 确保不会丢失文本中的原始信息

• Optimizer: AdamW, 学习率 3e-4，使用 cosine learning rate decay

• 参数量级：只有 7B

• 文本输入：这是一个测试123

• 数字分割：1 2 3 (每位数字单独作为 token)

• 字节回退：" " 的字节编码是：0xF0 0x9F 0x98 0x8A

• Tokenize 结果：["这是", "一个", "测试", "1", "2", "3", 0xF0, 0x9F, 0x98, 0x8A]
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Helium: Text LLM as BackBone

文本训练数据

• 12.5% 高质量文本

• Wikipedia, Wikibooks, Wikisource, Wikinews（百科/常识/新闻）

• Stack Exchange（问答社区）

• pes2o: Scientific Articles （科研论文）

• 87.5% 来自 CommonCrawl（网络抓取）

数据清洗流程

1. deduplication 文本去重

2. language identification 文本语种筛选

3. quality filtering 文本质量过滤

最终训练数据总 token 量级为 2.1T

文本去重

• 只使用 Wikipedia 的 WET 纯文本部分；导航栏/版权声明等，进行 line 级别去重

• FNV-1a hash 算法 + 布隆过滤器

• fastText 根据已经筛出的重复/非重复文本，训练二分类器进行模糊去重

• 如果有连续三行认定为重复文本，则删除

文本语种筛选 • fastText 支持语种类型判断，只保留判断为英文且概率大于 0.85 的文章

文本质量过滤

• 使用 fastText 训练 9 类的分类器，分别表示不同的文本来源

• 比如 StackExchange 细分了 STEM / humanities 等方向

• 对于每篇文章，逐行计算是高质量文本的概率，并且根据长度加权，卡阈值过滤

• 分类器的类别可以区分不同 domain，能帮助进行更细粒度不同 domain 的数据选择
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Helium: Text LLM as BackBone

Helium 效果评测

• 对比模型：参数量 7B 左右

• 第一类：训练 Token 数 2.5T 以内

• 第二类：Mistral / Gemma 1（更大规模的模型）

• 结论：Helium 在同参数量级的 Text LLM 中，效果不错；与更大规模模型相比也相差不大；也说明清洗后的数据质量比较可靠
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Mimi: Neural Codec with Split RVQ and Semantic Distillation
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Mimi: Audio Tokenization

Semantic/Acoustic Tokens

• Semantic Token

• Wav2BERT / Hubert 聚类或 VQ

• S3-Tokenizer（ASR 任务，有监督 + VQ）

• Acoustic Token

• Encodec / DAC (RVQ)

• 分别用两个模型获取 token，模型维护成本高/算力消耗大

• 之前模型通常是非因果的，需要完整语音才能获取 token 序列

改进：Speech-Tokenizer 

• 将 Semantic 和 Acoustic Token 合并到一个模型建模

• 用 Hubert 蒸馏 Semantic Token, Acoustic 建模 Semantic 之后的残差

• 仍然采用非因果模型，无法实现流式 tokenize
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Mimi: Audio Tokenization

Mimi Baseline

• 参考 SoundStream / Encodec（基本等价于流式 Encodec）

• 全卷积结构，ELU（Exponential LU） 激活，Weight-Norm

• 卷积均使用因果卷积，保证可用于流式

• 24kHz 采样率，960 倍下采样，帧率为 12.5Hz，流式的 latency 最低为 1/12.5 = 0.08s = 80 ms

• 训练损失函数： L1 重建损失函数 + GAN loss
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SoundStream
Encodec



Mimi: Audio Tokenization

Mimi 改进点一：VQ 前后增加 Transformer

• 模型结构：8 层 + 8 head + RoPE + 最大 250 帧 + GELU (Gaussian Error LU) 激活

• LayerScale：提高训练稳定性，对每个残差的输出进行缩放，缩放系数初始化为 0.01（可随模型训练一起学习）

• 优化器系修改：Adam → AdamW

• Transformer 适配流式应用：所有 attention 均使用 Causal Masking

• 出发点/效果：提升模型重建语音的音质；有助于 Semantic Distillation
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Mimi: Audio Tokenization

Mimi 改进点二：Semantic Distillation

• WavLM 预训练模型: 16kHz 输入，50Hz 输出，embedding 维度 1024

• Mimi 模型: 24kHz 输入，12.5Hz 输出，embedding 维度 512

• WavLM Semantic Distillation

• 先将输入音频重采样到 16kHz，计算 embedding

• 增加一层 stride=4, kernel=8 的 average pooling，4 倍下采样将 embedding 帧率从 50 Hz 降低至 12.5Hz

• Mimi 将第一层 VQ 的输出经过线性层投影至 1024 维度的 embedding

• 两者之间最小化余弦距离（最大化余弦相似度）

• 【注意】4 倍下采样的 average pooling 采用 causal 的形式，对于模型效果比较关键 
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Mimi: Audio Tokenization

Mimi 改进点三：Split RVQ

• 参考 SpeechTokenizer，Semantic Distillation 之后，剩余层建模的是原始音频与第一层之间的残差，实验发现会对音质带来负面影响

• Split RVQ

• Semantic VQ 单独一个分支

• Transformer 的输出经过 Linear 变换，经过 VQ 的 embedding 使用 WavLM 进行 Semantic Distillation

• Acoustic 采用 RVQ：2-8 层是 RVQ

• 否定了声学信息只包含于语义信息残差中的假设
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Mimi: Audio Tokenization

Mimi 改进点四：借鉴 DAC

• 量化参数配置：8 层 RVQ，每层 codebook = 2048（比特率 8 * 12.5 * 11 = 1.1 kbps）

• 参考 DAC 的实验策略：

• Codec Encoder 的输出是 512 维，但是 VQ 时先通过线性层降低至 256 维，提高 codebook 利用率

• Quantizer Dropout

• 随机选择 1-8 之间的数，训练时只用前 n 个量化层的输出用来恢复音频计算 loss

• 能够支持可变的比特率；提高训练效果的稳健性

• 训练时，50% 的概率不用 VQ 的 embedding 送入 decoder，而是用 VQ 之前的原始 embedding（不优化 VQ）
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Mimi: Audio Tokenization

Mimi 改进点五：训练 Loss 设计

• Encodec/DAC：L1 重建 Loss/MS-STFT 重建 Loss  + GAN Loss

• Mimi：去除了重建 Loss，只使用 GAN 相关的 Loss (feature matching + generator + discriminator)

• 实验结论：客观指标上有所下降，但是听感上明显变好
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Mimi: Audio Tokenization

消融实验

• ABX 错误率: 评价语义区分能力的客观指标

• 每次测试包含 3 个样本，其中 2 个样本是相同音素序列的音频，另外一个样本是其他相近音素序列对应的音频

• 比如： A 音频对应 beg，B 音频对应 bag，X 音频对应 beg

• 3 个音频样本都是同一个 speaker 的声音（避免不同 speaker 的影响）

• 三个样本经过模型 Semantic VQ 之后输出的 embedding，A 和 B 分别和 X 计算距离

• A 和 X 之间的距离小于 B 和 X 之间的距离，即为判断正确，否则为错误

• VisQOL: 评价音质的客观指标，需要真实音频作为参考

• MOSNet: 评价音质的客观指标，不需要音频作为参考

• MUSHRA: 评价音质的主观指标

①
②
③
④
⑤
⑥

实验对比结论

• 1 vs 2: semantic distillation 提升语义建模能力，但音质明显下降

• 2 vs 6: split VQ 语义变差点，音质提升很多

• split RVQ 帮助 semantic distillation 进行音质和语义的 trade-off

• 3/4 vs 6: Transformer 提升音质

• encoder 的 transformer 对于语义有明显帮助

• decoder 的 transformer 对于音质有明显帮助

• 5 vs 6: 样本随机用 50% 优化 VQ，音质客观指标提升，主观上略有变差
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Mimi: Audio Tokenization

与 Baseline 模型对比

• 对比时，Baseline 模型选择前几层，使得比特率能够与 Mimi 可比

• RVQGAN (DAC)：前 2 层

• SpeechTokenizer: 前 3 层

• SpeechTokenizer 与不加 Split RVQ 的 Mimi 很类似，语义区分能力强，但音质不如 Mimi

①
②
③
④

⑤
⑥
⑦

实验对比结论

• 3 vs 6: 采样率相同，Mimi 音质明显由于其他模型

• 5 vs 7: 去重重建 loss，音质主观明显更好，语义区分能力稍变

• VisQOL 客观指标与主观感受不一致

• 结论：Mimi 是因果结构，支持流式，是低延迟实时语音交互的基

础，同时还达到了比非流式更优的效果
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Moshi: Generative Audio Modeling with RQ-Transformer
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Generative Audio Modeling with RQ-Transformer

RQ-Transformer

• Flatten Transformer：假如将 Mimi Codec flatten 之后使用 GPT 建模

• 12.5Hz 帧率，每帧 8 层，每秒对应 100 token

• 期望建模 5 min 对话 = 300s，对应于 30000 token，序列过长

• 参考 UniAudio: Local Transformer + Global Transformer

• 支持多个长度相同序列进行 Global/Local 建模

• RQ-Transformer 采用完全一致的思想

• 在同一时间步的多个序列元素上，增加一个小的 AR Transformer 模型

• Temporal Transformer  + Depth Transformer
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Generative Audio Modeling with RQ-Transformer

RQ-Transformer

• 时间步 s 时，每层的元素（共 K 层）

• Temporal Transformer 

• 在不同时间步的 context vector 级别进行自回归

• 第 s 步预测 context vector 时，输入是 s-1 的 K 层 embedding 之和

• Depth Transformer

• 在相同时间步的不同层之间进行自回归（每次预测是 K steps）

• 第 1 步预测时，只需要 context vector 和 initial token

• 第 k (1 < k <= K) 步预测时，用到 context vector，及

• 对于 k = 1, 2, …, K, 不同的 k 表示不同层的 token，

• 使用不同的线性层，各有各的模型参数 （Depth-wise Parametrization）
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Generative Audio Modeling with RQ-Transformer

Audio Modeling

• Baseline：直接 Mimi 8 层 Codec，按照 RQ-Transformer 的方式建模

改进一：Acoustic Delay

• 将第一层 semantic token 与 2-8 层 Acoustic Token 进行 delay 错位

• 直观理解：

• 减轻了 depth 维度上子序列之间的互相关性，模型更容易建模

• 联合分布相当于语义token 边缘概率分布与声学 token 边缘概率分布之间的乘积

• 下图展示了 acoustic delay τ = 1 的情况

𝑉s,𝑞 s

𝑞
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Generative Audio Modeling with RQ-Transformer

改进二：多流建模 Multi-Stream Modeling（Full-Duplex Dialogue 的关键）

• User Stream: 用户  +  System Stream: Moshi

• 允许模型同时接收两个 stream 的信息

• 推理阶段 user stream 使用用户真实语音的 token，Moshi 预测的 user stream 的 token 会被覆盖

• 直接在 Depth 维度上，堆叠两个 stream 的 semantic/acoustic tokens

• 分别 acoustic delay， 两个 stream 之间没有 delay

• User 在上部分，Moshi 在下部分（demo 中 Moshi 总是开启对话的原因）
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Generative Audio Modeling with RQ-Transformer

改进三：Inner Monologue

• 只使用语音模态的 semantic/acoustic token训练，也可具有基础的全双工对话能力

• 没有用到 Backbone Helium Text LLM 的文本模态语义层面能力

• 增加一路 Text Tokens（与 Helium 使用相同的 text tokenizer）

• 只使用 Moshi 音频对应文本，推理阶段不希望对 User Stream 进行 ASR

• Moshi 能够边生成语音边生成对应的文本，不需要额外 ASR

• text 与 audio tokens 需要进行对齐

• 语音帧率是 12.5Hz，高于文本模态，很少有 text token 需要占用后续 word 对应帧的情况

• 最终训练数据中，text tokens 中有 65% 是 PAD token

262025/12/20 Moshi: A Speech-Text Foundation Model for Real-Time Dialogue

• 使用 Whisper 提供的 word-level timestamp，对应到帧上

• text token 定义两种特殊占位 token: PAD, EPAD

• 每个 text token，在剩余时间范围的帧上，补充 PAD，最后一帧标记为 EPAD

• EPAD 便于增加一些强制规则，比如强制输入 text token =  EPAD 来结束对话

• Moshi 静音的情况，对应的 text token 设定为 PAD



Generative Audio Modeling with RQ-Transformer

Moshi 最终方案：text 与 audio 联合建模

• Depth Transformer 建模长度：2Q+1 = 2*8+1=17

• Moshi 允许模型同时接收/处理两个 stream 的信息（全双工）

• Moshi 的 text/audio token 和 user 的 audio token 都会被预测

• user stream 是用户真实语音的 token，所以 Moshi 预测的 user token 被覆盖，使用

用户真实的 audio token 进行下一个 step 的推理

• 思考：用户 stream 的 audio token 可以不一起自回归，只用来作为模型的一个 condition

• 论文认为：用户 stream 一起自回归能够模拟生成一些对话，验证模型的对话能力

说明：对话的 arbitrary dynamics (turn-taking, interrupt, back-channel )

• 不需要显式建模，只需要训练数据包含这些对话情况即可学习

• 因为模型每个 step 都会处理/使用 user stream 的 audio token 信息

• 用户说话的过程中，Moshi stream 期望输出是 silence

• 对应的 text token 是 PAD，audio token 是具有 silence 含义的 token
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Generative Audio Modeling with RQ-Transformer

Moshi 模型的扩展应用

• 通过调整 text token 与 audio token 之间的 delay，单独支持流式的 ASR/TTS

• text delay: streaming ASR

• audio delay: streaming TTS

• 只需要改变 text/audio token 之间的 delay 关系即可实现

扩展应用一：Streaming ASR

• 训练时, audio token 需要比 text token 在时间步上更早

• 推理时预测输出的 audio token 忽略，只使用真实输入的 audio token

• text tokens 的预测结果即为流式 ASR 结果

• 实验效果

• LibriSpeech-test clean: WER=5.7% (greedy decoding)
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Generative Audio Modeling with RQ-Transformer

扩展应用二：Streaming TTS

• 训练时, text token 需要比 audio token 在时间步上更早

• 为了与 Moshi 模型匹配，text token 需要的是带有 PAD/EPAD 的序列

• 如何指定 text token 的 PAD/EPAD？

• 解决方案：模型推理阶段会自行预测 text token

• 若预测的 text token 是 PAD/EPAD，则用预测结果作为下一 step 输入

• 若预测的 text token 是另一个单词，则用待合成的下一个单词 token 覆盖

• 其他应用：可以调整 PAD 在整个 text token 中的比例阈值，来限制语速

• 给定了一段匹配的 text 和 audio token 作为 prompt，即可续写实现零样本声音复刻

• 相同测试集：Streaming TTS, WER = 4.7%

• VALL-E  TTS, WER = 5.9%

• NaturalSpeech3, WER = 1.8%
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*Datasets and Model Training
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Datasets

音频数据来源

• 第一部分：音频（无限制）

• 700 万小时无监督数据，大部分是英文，24kHz 单通道音频

• 用来训练单 stream 的模型，需要文本 tokens

• Whisper large-v3 识别获取文本标注

• Inner Monologue 策略下，text token 使用整个音频对应的文本

• 第二部分：低质量对话音频

• Fisher 对话类数据集，2000 小时英语双通道电话，适合 multi-stream 训练

• 原始数据采样率为 8kHz，使用 AudioSR 超分模型上采样到 24kHz

• 第三部分：精品对话音频

• 170 小时品质更高的对话型语音数据，作为 supervised multi-stream dataset

• 第二+第三部分数据

• Multi-Stream 模型训练时，需要从每组对话两个 speaker 中随机选一个作为 main speaker，模拟 Moshi (system) 的角色

• 模型输入的文本 tokens 给定的是 main speaker 对应的文本
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Datasets

Speech-Text 指令数据

• 文本类指令数据集：Open Hermes

• 问题： url 等格式不适配 TTS，QA 数据不符合口语化的文本习惯

• 书面化经常用 bullet 枚举，口语化则通常是：first of all, secondly, …

• 解决方案

• 将 Helium Text LLM 在 Open Hermes 和口语对话类的文本上 finetune

• 能够用于生成更加自然的问答类型的文本数据

• 生成语音 → 语音的对话型指令数据

• 使用 Multi-Stream TTS 合成 20k 小时对话型指令数据

• 针对 Moshi 音色的指令数据

• 专业配音演员录制的高品质音频

• 模拟 70 种不同角色/风格

• 指令微调阶段只使用一个精品音色的数据，即可保证推理时音色的一致性

• 实验结论：不会被用户的音色带偏；随着对话时长变长，音色稳定性也不下降
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Datasets

生成更多文本对话指令数据

• 类型一： General Knowledge

• 使用 Helium 生成对话文本

• 注意：需要造数据让 Moshi 知道自己是 Moshi，来源于 kyutai

• 类型二：控制 Moshi 的语调/风格/角色扮演

• 类型三：提高模型稳定性的数据

• 用户问题中故意有 misspelling 的对话

• Moshi 回复：让用户重新阐述一下问题

• 增加一些 fact 事实性地能力：埃菲尔铁塔在北京吗？

• Moshi 回复：不是

• 限定需要的是能让 Moshi 给出积极正面回复的问题

• 数学运算/语法规则等任务补充了一些数据

• 对于不道德/不合适的问题，Moshi 还需要具备拒绝回答的能力
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Prompt 文本模板举例



Datasets

生成更多文本对话指令数据

• 类型一： General Knowledge
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Datasets

生成更多文本对话指令数据

• 类型二：控制 Moshi 的语调/风格/角色扮演
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Datasets
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生成更多文本对话指令数据

• 类型三：提高模型稳定性的数据

• 用户问题中故意带有 misspelling



Training Strategies
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Stage 1: Helium 

Pretraining: Text 

LLM

Stage 2: Moshi 

pre-training: 

Single-Stream

Stage 3: Moshi 

post-training: 

Multi-Stream

Stage 4: Model 

finetuning（SFT）

Stage 5: Model 

Instruction 

Finetuning

Stage 2 训练细节

初始化

• 使用 Helium 初始化 Temporal Transformer

• Depth Transformer 随机初始化

训练数据

• 50% batch 是纯文本数据，避免灾难性遗忘

• 50% batch 是 text+audio tokens, Single-Stream 数据

模型训练配置

• batch size: 16 小时音频；每个样本是 5 min 的音频

• text 和 audio 之间的 delay 随机设置 （-0.6s 到 0.6s）

• 交叉熵损失函数计算时降低 PAD 权重为 50%

• 训练 100 万 steps

Stage 3 训练细节

训练数据

• 单通道数据，进行 diarization

• 同一条音频作为两个 stream，获取

• 根据 speaker turn mask 掉非当前 speaker 的 token

• 选定 main speaker

• text tokens 是选定 speaker 的 token

• 10% batch 使用纯文本数据

模型训练配置

• text 和 audio token 之间的 delay 设置为 0

• 训练 10 万 steps, 学习率比 single-stream 降低

Stage 4 训练细节

Stage 3 训练问题

• Single-Stream 的对话数据没有 overlap

• Main speaker 生成语音时，对方是静音的

训练数据

• 使用 Fisher 真实的 multi-stream 数据

• 随机选其中一个作为 main speaker

模型训练配置

• 训练 10k steps，不再使用纯文本数据训练

Stage 5 训练细节

训练数据

• 在 Stage 2 模型的基础上，训练流式 TTS 模型

• 使用精品 170 小时数据 finetune 模型

• audio delay = 2s

• 根据生成的指令文本，合成对应的 20k 小时数据

模型训练配置

• 训练 30k steps



Training Strategies

训练损失函数

• αk = 100, 对应于 1 层 semantic token

• αk = 1, 对应于 7 层 semantic token
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目标：针对 user stream 的音频进行数据增广，提高 Moshi 在实际使用中的泛化性

• 50%，gain：-24dB ~ +15 dB，应对音量变化

• 30%，加噪：-30dB ~ +6 dB，相比于原始 user stream，应对噪声变化

• 50% 的概率下，留出一定的静音区域不加噪声（最长 30s 静音区域）

• 回声模拟：

• 将 Moshi 通道的声音，以 [0, 0.2] 随机的 scale 叠加到 user stream

• 叠加时，随机错位延迟 100~500ms

• 混响模拟：reverb

训练数据增广



Ablation Study

RQ-Transformer 消融实验（Single-Stream）

• 评价标准 Perplexity: 计算生成的 semantic/acoustic token 的平均 perplexity

• 对比方案：每层 delay 1 个 step （Mini-Omni）

• RQ-Transformer 带来的收益不大

• 效果好，但 Latency = 8 * 80ms = 640 ms，不适合 real-time

• Moshi 方案：每层 acoustic delay 均为 2

• RQ-Transformer 带来的收益很大

• Latency = 3 * 80ms = 240ms

𝑉s,𝑞 s

𝑞
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Ablation Study

RQ-Transformer 消融实验（Single-Stream）

• 对比不同模型参数配置的效果

• 评价标准：

• 针对 acoustic delay 不同的情况，perplexity 可比性不高

• 使用 3s prompt 续写之后的 semantic/acoustic token

• 转换为语音，使用 whisper 识别为文本

• 使用 LiteLlama-460M-1T 评价识别出文本的 NLL 和 长度，作为评价指标

𝑉s,𝑞 s

𝑞
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Moshi Evaluation

Moshi as Audio LM

• 评测任务：判定生成 semantic/acoustic token 的语义/音质效果

• 评价指标：

• sWUGGY：

• 两个发音相近的词，一个真实存在，一个并不是真正的词

• 如果能够给真实存在的词更高的概率，说明模型效果越好

• sBLIMP：句法正确的句子比语法错误的句子更高的概率，说明模型的语义能力越强

• Spoken Topic-StoryCloze：给定 5 句话，判断第 5 句是否是前 4 句合适的下文

• Moshi 基础配置: single-stream, 不使用 Inner Monologue（训练时不加入 text tokens）

• 对比实验一

• 随机初始化的 3 个模型：GSLM / AudioLM / TWIST

• Moshi 其他配置: audio-only pretrain, 随机初始化（cold-start）

• 对比实验二

• TextLLM 初始化的 3 个模型：TWIST /  VoxtLM / Spirit-LM （只用语音数据训练）

• Moshi 其他配置：audio-only pretrain, 使用 Helium checkpoint 初始化（warm-start）

• 对比实验三

• VoxtLM / Spirit-LM（语音 + 文本数据一起训练）

• Moshi 其他配置：

• A：在 single-stream 上预训练

• B：完整训练流程，配音演员真实录制声音 finetune

• C：完整训练流程，使用合成的音色
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Moshi Evaluation

Spoken QA

• 测试集：Spoken Web/Llama Questions, 合成版的 TriviaQA

• 评价指标：语音 Answer 经过 ASR 识别之后，与答案相符的准确率

• 正确答案包含在 ASR 结果中即认为正确（来自 Spectron）

• 对比的公平性：

• Moshi w/o Inner Monologue 与 audio-only 的模型对比

• Moshi w/ Inner Monologue 与 audio-text 模型对比

• Helium 是文本模态的 QA，指标作为参考

• Moshi 不仅效果远好于 SpeechGPT 和 Spectron，还支持流式输出
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Moshi Evaluation

Dialogue Quality and Turn-Taking Statistics

评价指标：

• DialogueGPT：计算对话文本的 Perplexity，判定对话的合理性

• Turn-taking Event Statistics，与 Ground-Truth 对比，比较一致性
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Takeaways

• Multi-Stream Modeling

• RQ-Transformer (Temporal + Depth)

• Mimi 的优化方法

• Streaming TTS 方案

• 文本/音频数据的清洗/构造
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Thoughts

• Q1: Speech Encoder or Discrete Speech Tokens?

• Discrete Speech Token 用于 LLM 自回归建模更加自然

• Speech Encoder 如果想要实时对话，需要改为 Streaming Speech Encoder

• Q2: User Stream 也需要参与自回归预测吗？

• Moshi 训练时，用户的行为参与 Loss 计算和模型更新

• 实际推理时，用户的行为是给定的，训练与推理不适配？

• 用户的行为是否只需要作为 System Stream 预测的 condition

• Q3：多层 token 的复杂性，使用单层 token 是否够用？

• GSLM / SpeechGPT 系列，LLM 只建模一层 token

• Mini-Omni 建模多层 token
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Language Model Can Listen While Speaking



其他论文

Full-Duplex and Real-Time Spoken Dialogue
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论文列表: https://github.com/metame-ai/awesome-audio-plaza/blob/main/docs/awesome_voice_omni.md

1. Generative Spoken Dialogue Language Modeling

2. VITA: Towards Open-Source Interactive Omni Multimodal LLM

3. Language Model Can Listen While Speaking

4. Beyond the Turn-Based Game: Enabling Real-Time Conversations with Duplex Models

5. A Full-duplex Speech Dialogue Scheme Based On Large Language Models
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