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Figure 1: TorToise-v2 architectural design diagram. Inputs of text and a reference audio clip (for speaker
cloning) flow through a series of decoding and filtering networks to produce high-quality speech.
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Model shape 1D Conv resnet, encoder + decoder

Top dim 512

Bottom dim 1024

Codebook dim 256

Quantizer token count 8192

Quantization algorithm Clustering a la original VQVAE, no restart
Batch size 8192

Total training 360M samples

Losses MSE reconstruction loss, commitment loss
LR 3e-4

B1, B2 .9 .9999

Weight decay .01

EMA weights replaces LR decay with rate .999
Table 1: VQVAE model details & hyperparameters

EAl/&—: Speech Conditioning Input

®

1. The speech conditioning input starts as one or more audio clips of the same speaker as the target. These clips are

converted to MEL spectrograms and fed through an encoder consisting of a stack of self-attention layers. The
autoregressive generator and the DDPM have their own conditioning encoders, both of which are learned alongside
their respective networks.

2. The output of these layers is averaged to produce a single vector. The vectors from all of the encoded conditioning
clips are then averaged again before being fed as an input into the autoregressive or conditioning networks.

3. The intuition behind the conditioning input is that it provides a way for the models to infer vocal characteristics like

tone and prosody such that the search space of possible speech outputs corresponding to a given textual input is
greatly reduced.

4. Speech conditioning encodings are learned by a separate encoder that takes in the MEL spectrogram of a related clip

(another clip of the same person speaking) and produces a single vector embedding that is placed at the front of the

attention context. Two encodings were produced for each training sample, which are averaged together. The
maximum input length to the conditioning encoder is 132,300 samples, or 6 seconds of audio.
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F—Ef5: LLM

e IfBE: Text + Conditioning Mel - LLM - %t Mel Codes
o LLMIEBIZEH]: GPT-2 (Decoder-Only), &4&A%y 350-400M

Model architecture Transformer stack with causal masking
Layers 30

Model dim 1024

Attention heads 16

Text tokenization Custom BPE, 256 tokens wide.

Batch size 1024

Total training 119M samples

Text, next token prediction, loss weight .01
MEL token, next token prediction weight 1

LR le-4

B1, B2 .9 .96
Weight decay .01

LR Warmup 500 steps
EMA decay rate .999

Table 2: AR prior details & hyperparameters

After training the autoregressive decoder to convergence, I fine-tuned it on the clean audio datasets
from LibriTTS and HIFITTS.
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Model architecture Dual transformer stacks
Depth 20

Model dim 768

Attention heads 12

Text tokenization = Custom BPE, 256-token wide

Batch size 1024

Total training 80M samples.
Losses Contrastive
LR 3e-4

B1, B2 9.96

Weight decay .001

LR Warmup 500 steps

EMA decay rate 999

Table 3: CLVP training details & hyperparameters
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Model shape Alternating full attention + conv resblocks
Depth 10
Model dim 1024
Attention heads 16
Batch size 212
Total Training  65M samples
Losses MSE (weight 1) + VLB (weight n)
LR le-5
B1, B2 .9, .999

Weight decay .001
LR Warmup 1000 steps
EMA decay rate .999

Table 4: Diffusion decoder details & hyperparameters
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C Future Work

TorToise is the product of playing way over my paygrade, so to speak. As an independent researcher,
I only had a small number of GPUs to perform my experiments with, and made many mistakes in
the process. Following are recommendations for architectural tweaks to be made in future work
building off of TorToise:

i

Constrict VQVAE codebook embedding dim. This has been experimentally shown to pro-
duce drastic performance improvements.

. Relative positional encodings. The AR model uses fixed positional encodings, which limits

the total amount of speech it can produce. Using relative encodings would allow arbitrary
length sequences.

. Train CLVP on larger batch sizes. Contrastive models benefit from extremely large batch

sizes.

. Train CLVP on longer audio sequences. CLVP only ever saw 13 second clips, which is

likely why re-ranking on longer samples suffers.

. Diffusion decoder architecture. The diffusion decoder is an attentional network that omits

Feedforward blocks. In retrosepct, this was a poor design decision and feed-forward blocks
should be included.

Train the entire model stack at 24kHz or re-train Univnet at 22kHz sampling rates.

. Train on more data for longer. The training curves for TorToise indicate that we were far

from overfitting. Simply training longer likely would have improved results.
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®TTS - TTS 0.22.0 documentation

XTTS: a Massively Multilingual Zero-Shot Text-to-Speech Model

Coqui, Freeing Speech.

XTTS is a super cool Text-to-Speech model that lets you clone voices in different languages by using just a quick 3-second audio clip. Built on

the «® Tortoise, ®TTS has important model changes that make cross-language voice cloning and multi-lingual speech generation super easy....
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o MANFHIE: GPT-2 HithEY latents FRAE, iMtHEE—F R

o IEAILEN): (A HiIFIGAN 26M SEiEHEY

o BN ERPEEIR, ERIEANEAIMNG speaker embedding (FliJllZRFr9HIEAIEEL H/ASP)

o IRUREKEEAN SCL WiEA—EE loss

o ARNEM/ERSTIMAERIFE, 7312 H/ASP {&REFHIRY spk emb, ITERZIEME (RAURZEME)

SRIRARX

o JIZREME: =314k /NEY, EABIEM 13k /BT

o RSB BREZRE0.75, repetition penalty 10, top_k=50, top_p=0.85

Table 3: User preference scores by comparing XTTS with Hier-
Speech++ and Mega-TTS 2 models.

Comparison CMOS(T) SMOS(1)
XTTS vs HierSpeech++ | 0.41 +0.26 | -0.31 £ 0.36
XTTS vs Mega-TTS2 | 092 +0.22 | -0.39 £ 0.38

Table 4: CER and SECS for YourTTS (Exp. 2), XTTS, and
Mega-TTS 2 models for all supported languages.

Lang YourTTS XTTS Mega-TTS 2
" | CER()) | SECS(1) | CER(]) | SECS(T) | CER(]) | SECS(1)
ar 11.1713 | 0.4400 3.3503 0.5007 - -
cs 4.0174 0.4496 1.3295 0.4655 - -
de 2.2411 0.4612 3.1694 0.5175 - -
en 29727 0.5651 0.5425 0.6423 1.4269 0.6428
es 1.0926 0.4879 1.4606 0.5371 - -
fr 3.3965 0.4376 1.4937 0.4799 - -
hu 4.5098 0.4819 1.4622 0.4570 - -
it 1.7010 0.4520 0.7982 0.5008 - -
ja 10.2808 | 0.4873 5.3748 0.5207 - -
ko 8.8567 0.4836 4.0647 0.4760 - -
nl 3.4228 0.4269 0.946 0.4825 - -
pl 1.5925 0.4561 0.7593 0.4833 - -
pt 1.5481 0.4693 1.1068 0.5033 - -
ru 2.8566 0.4606 0.932 0.5012 - -
tr 2.6367 0.4855 1.042 0.5031 - -
zh-cn | 14.4220 | 0.4825 5.2016 0.5023 6.1031 0.4529
Avg. 4.7949 0.4704 2.0646 0.5046 - -
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e JB3GHH: IndexTTS: An Industrial-Level Controllable and Efficient Zero-Shot Text-To-Speech System
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o JFFRHEL: https://github.com/index-tts/index-tts (' 3k+)
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