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Overview: Audio Models based on Autoregressive Diffusion Models
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Autoregressive Diffusion Models (ARDMs)
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def inference(text_input, audio_features):
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Table 2. Zero-shot TTS performance comparison between MELA-TTS and results from literature on seed-tts-eval. { indicates that the model

is trained using the same data, so the results are comparable.

Model test-zh test-en test-hard
CER| SS11 SS21¢ WER,| SS1{ 8S21t CER| SS11 SS821
Human 1.3 0.76 0.78 2.1 0.73 0.74 - -
Non-autoregressive Models
F5-TTS [10] 1.6 0.74 0.80 1.8 0.65 0.74 8.7 0.71 0.76
MaskGCT [11] 23 0.77 0.75 2.6 0.71 0.73 10.3 0.75 0.72
Autoregressive Models
Seed-TTS [12] 1.1 0.80 - 23 0.76 - 7.6 0.78 -
DiTAR [4] 1.0 0.75 - 1.7 0.74 - - - -
CosyVoice [9] t 3.6 0.72 0.78 43 0.61 0.70 11.8 0.71 0.76
CosyVoice 2.0 [13] 1 1.5 0.75 0.81 2.6 0.65 0.74 6.8 0.72 0.78
CosyVoice 3.0-0.5B [2] T 1.3 0.75 0.81 25 0.65 0.75 7.0 0.72 0.79
MELA-TTS
w/o rep align | 1.2 0.74 0.79 4.0 0.60 0.68 10.9 0.72 0.78
w/ rep align t 0.9 0.72 0.77 2.4 0.59 0.68 7.6 0.71 0.76
streaming mode w/ rep align { 0.9 0.72 0.78 25 0.59 0.68 7.7 0.71 0.77
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Table 1. Ablation study of streaming synthesis, utterance embed- o
ding (Utt Emb), and representation alignment (Rep Align). * indi- 2
cates using mel-spectrogram instead of the pretrained ASR encoder
output as the representation alignment target.
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0 X X X 6 . 3 0 . 4 6 0 = 5 5 20 3ID 40 5I|:I EICI TII:I BICI ‘JII:I 1';30
1 X X 53 0.46 0.54 Epoch
2 X X * 6.7 0.41 0.48 . .
3 X X | 60 047 057 SHEXIEIe
4 X 59 0.48 0.58 0vs 1: RIS ZfE, ERAEEREEERET
5 X X 6.6 046 0.55 1 vs 2: RIFFREXSTERE N =S AMAEE FH/REHE
6 5.0 048 0.8 0 vs 3: ¥R utt RIE, YRS EREIISEBINEESER/ER
CosyVoice tBallAS RiX /N BIE
Ovs5|4vs6: MO REREEASKERE
B IR SRR ER, MEREIRSELT
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Tokenizer-Free TTS for Context-Aware Speech Generation

and True-to-Life Voice Cloning

C)Pnﬁecn
~ Model:
Demo:
Samples:

https://arxiv.org/pdf/2509.24650

VoxCPM Team

https://github.com/OpenBMB/VoxCPM/

https://huggingface.co/openbmb/VoxCPM-0.5B
https://huggingface.co/spaces/openbmb/VoxCPM-Demo
https://openbmb.github.io/VoxCPM-demopage/
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VoxCPM: Hierarchical ARDMs

| 0o, ee, -\ e
[7] oiscrete Text Tokens [ LocDIT ][ LocDIT ]

() Continuous Speech Latent Tokens AL A A
Residual Acoustic Language Model (RALM) ]

[:] Residual Acoustic Hidden

Stop Predictor

(] scalar Semantic Hidden [
00000

:
o4
-

—
3

[ Text-Semantic Language Model (TSLM) ]

slele]alz i—ﬁ % %—ﬁ
A . | -

., 4 : ;
[ BPE Tokenization J [ LocEnc ] [ LocEnc ]
VoxcPM isa TTS model,* ) () O, o @ @

5 « "

o

2025/12/20 Recent Advances in ARDMs for Speech Generation



VoxCPM: Hierarchical ARDMs
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VoxCPM: Hierarchical ARDMs — Semantic Modeling

TSLM (Text-to-Semantic LM)
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[7] piscrete Text Tokens

TSLM (Text-to-Semantic LM)
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VoxCPM: Hierarchical ARDMs — Acoustic Modeling

RALM (Residual Acoustic LM)
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«  /RSCES: Emilia FHRAY 10 /NS HRSeS E0E

- KHUESCEG: Jpaexzdtit 180 A/MTEUE, B8 BFH. BE.

SeedTTS Mjztes

2025/12/20

B

Table 3: Performance on Seed-TTS-eval Benchmark

Model Params Open-Source EN ZH Hard
WER| SIMt CER]| SIMt+ CER| SIM*?

MegaTTS3 (Jiang et al., 2025) 0.5B X 2.79 77.1 1.52 79.0 - -
DiTAR (Jia et al., 2025) 0.6B X 1.69 73.5 1.02 75.3 - -
CosyVoice3 (Du et al., 2025) 0.5B X 2.02 71.8 1.16 78.0 6.08 75.8
CosyVoice3 (Du et al., 2025) 1.5B X 222 72.0 1.12 78.1 5.83 75.8
Seed-TTS (Anastassiou et al., 2024) - X 2.25 76.2 1.12 79.6 7.59 77.6
MiniMax-Speech (Zhang et al., 2025) - X 1.65 69.2 0.83 78.3 - -
F5-TTS (Chen et al., 2024) 0.3B v 2.00 67.0 1.53 76.0 8.67 71.3
MaskGCT (Wang et al.) v 2.62 71.7 2.27 77.4 - -
CosyVoice (Du et al., 2024a) 0.3B v 4.29 60.9 3.63 72.3 11.75 70.9
CosyVoice2 (Du et al., 2024b) 0.5B v 3.09 65.9 1.38 75.7 6.83 72.4
SparkTTS (Wang et al., 2025b) 0.5B v 3.14 57.3 1.54 66.0 - -
FireRedTTS (Guo et al., 2024) 0.5B v 3.82 46.0 1.51 63.5 17.45 62.1
FireRedTTS-2 (Xie et al., 2025) v 1.95 66.5 1.14 73.6 - -
Qwen2.5-Omni (Xu et al., 2025) 7B v 2.72 63.2 1.70 75.2 7.97 74.7
OpenAudio-s1-mini (OpenAudio, 2024) 0.5B v 1.94 55.0 1.18 68.5 23.37 64.3
IndexTTS 2 (Zhou et al., 2025) 1.5B v 223 70.6 1.03 76.5 7.12 75.5
VibeVoice (Peng et al., 2025) 1.5B v 3.04 68.9 1.16 74.4 - -
HiggsAudio-v2 (BosonAl, 2025) 3B v 2.44 67.7 1.50 74.0 55.07 65.6
VoxCPM-Emilia 0.5B v 2.34 68.1 1.11 74.0 12.46 69.8
VoxCPM 0.5B v 1.85 72.9 0.93 77.2 8.87 73.0
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C3-Eval lliztes

¥3E: hard s RIS EBIEZMIENR, L CosyVoice2/3 A4/ (JRERTEER] MELA-TTS Y LocDiT 1)

2025/12/20

Table 4: Performance on CV3-eval Benchmark. *denotes close-sourced systems.

Model CV3-EVAL CV3-Hard-ZH CV3-Hard-EN
ZH-CER| EN-WER| CER| SIMt DNSMOSt WER,| SIM?T DNSMOS?t

F5-TTS 5.47 8.90 - - - - - -
SparkTTS 5.15 11.0 - - - - - -
GPT-Sovits 7.34 12.5 - - - - - -
CosyVoice2 4.08 6.32 1258 [ 726 3.81 11.96 66.7 3.95
OpenAudio-s1-mini 4.00 5.54 18.1 58.2 3.77 124 55.7 3.89
IndexTTS2 3.58 4.45 12.8 74.6 3.65 8.78 74.5 3.80
HiggsAudio-v2 9.54 7.89 41.0 60.2 3.39 103 61.8 3.68
CosyVoice3-0.5B* 3.89 5.24 14.15 78.6 3.75 9.04 759 3.92
CosyVoice3-1.5B* 3.91 4.99 9.77 78.5 3.79 10.55 76.1 3.95
VoxCPM-Emilia 4.47 5.23 222 62.6 347 10.00 62.6 3.68
VoxCPM 3.40 4.04 12.9 66.1 3.59 7.89 64.3 3.74

Table 5: Subjective Evaluations in terms of Naturalness and Speaker Similarity.

ZH EN
Model
N-MOS S-MOS N-MOS S-MOS

MaskGCT 3.20+0.11 3.77+0.11 3.844+0.11 4.00 £+ 0.10 EE;UI'IJ$I)|'\IU
Cosy Voice 2 3.38+0.12 401 +£0.10 4.144+0.09 3.97+0.10

IndexTTS 2 4254009 405+0.09 4.03%+0.10 4.16 £ 0.09
VYoxCPM-Emilia 3.79+0.12 3.99+0.11 3.91 +0.10 4.10 £+ 0.09

VYoxCPM 4104+010 411+010 411+4+009 4.18+0.09
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I:l Discrete Text Tokens

. @@ TSLM — DiT: ,_5 DiTAR %'éﬂ«‘l (") continuous Speech Latent Tokens

(] TextHidden

* @ RALM ZEREER, ERIREHXENEZHET D spoecvon
- © E¥zZA FSQ #®H{ES LocDiT RIS 8 ;“s.:e [

- [REENFIEREVERN, EEE2BUEEREERN

Table 7: Ablation Studies about core architecture designs.

Model Setting EN ZH ZH-hard case Text-Semantic Language Model (TSLM)
WER| SIMt CER]| SIMt CER| SIM+?

@ default setting 298 626 177 704 1819 649 ‘:T i & | &

w/o RALM: TSLM (24 layers) — LocDiT 4.34 618 305 694 2500 638 =1 D (1B H— : g

w/o RALM: TSLM (30 layers) — LocDiT 535 626 346 698 3040 639 A R
@ "o E<; in RALM: TSLM — ALM — LocDiT 491 609 494 681 2717 617 | eee = ,| | Loctn | Lockne

residual ; L. : P H % B

& wlo b in condition: TSLM — FSQ — LocDiT 3.86 58.3 3.05 67.6 23.65 61.7 woxcomiso Trsmodar s O O O‘ ® .i ®
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RUEhEhIS = Table 6: FSQ dimension selection study on the Emilia dataset. Note: The 256-dim was selected for the final
lﬁ WE*H‘.‘L FSQ = ﬁ VoxCPM configuration, with the understanding that larger training datasets needs more powerful modeling

e e " capabilities.
« s FREBEERSEEEBIE ) EN 7ZH ZH-hard case
Model Setting
. d {83 FSQ 9 embedding 4 WER| SIM? CER| SIMt CER| SIM1t
N N o _ w FSQ: d4s9 518 593 405 680 1955 623
o e RENENEEESEIRITTE R U w ESQ: d16s9 322 604 187 705 1442  66.2
w FSQ: d64s9 3.22 61.1 2.14 69.8 17.48 65.1
w FSQ: d128s9 343 622 167 707 1676 657
w FSQ: d256s9 2.98 62.6 1.77 704 18.19 64.9
w FSQ: d1024s9 3.07 62.0 2.38 69.8 20.38 64.7
w/o FSQ: d1024s00 3.67 62.1 2.30 69.6 2492 63.5
RETHETA : : :
iEEtsELS - CFG Table 9: Effect of LM guidance on LocDiT, tested with VoxCPM.
EN ZH ZH-hard case
. 3875 CFG B, TERY B CFG Value
=8 T EERRE WER| SIMt CER| SIM? CER| SIM+?
- CFG Z2#{7£ 1.5-2.0 &L (WER/SIM —E(&#¥) 10(wloCFG) 1632 551 1447 615 5687 430
1.5 1.86 72.1 1.16 77.0 9.60 73.9
2.0 1.85 72.9 0.93 77.2 8.87 73.0
3.0 2.16 71.4 1.12 74.7 13.22 65.0
5.0 12.78 60.7 17.23 594 48.46 399
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=51 554515
Warmup-Stable-Decay (WSD)

«  MiniCPM: Unveiling the Potential of Small Language Models with Scalable Training Strategies: https://arxiv.org/pdf/2404.06395

VS—VT] , sS<W Table 2: Training configurations for VoxCPM variants.
WSD(T;s) = n, W<<s<T Model Phase Learning Rate Tokens/Batch Iterations GPUs
f(s=T)y, T<s<S VoxCPM Stable 1x 104 4,096 400K 40 x H100
0<f(s—T)<1 VoxCPM Decay 1x107% —5x107° 8,192 100K 40 x H100
s N s VoxCPM-Emilia  Stable 1x1074 4,096 150K 24 x H100
BRIFEREREL, 1ESBAEEU=R VoxCPM-Emilia  Decay 1 x 104 — 5 x 10~6 8,192 50K 24 x H100
: -4
Learning Rate Schedule with Exponential Decay VoxCPM-ablation  Stable 1 x10 4,096 200K 8 x H100
1.0 —— WSD(T; s)
a 0.8
2 Table 8: Performance across training phases.
2 0.6} EN ZH ZH-Hard Case
i Warmup Stable Decay Phase
“;,04 WER| SIMt CER| SIMt CER| SIM*t
% | Stable 2.05 69.7 0.99 75.1 13.22 68.6
Yoot Decay 1.85 72.9 0.93 77.2 8.87 73.0
0.0f ! | . | : |
0 20 40 60 80 100
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VoxCPM: Hierarchical Representations Visualization
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VoxCPM: Hierarchical Representations Visualization
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Demo: https://openbmb.github.io/VoxCPM-demopage/
o0
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VibeVoice Technical Report: https://arxiv.org/pdf/2508.19205
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VibeVoice Technical Report: https://arxiv.org/pdf/2508.19205

test-zh test-en
Model FrameRate | cppigy|  SIM1 | WER(%)) SIM1
MaskGCT [WZL"24] 50 2.27 0.774 2.62 0.714
Seed-TTS [ACC " 24b] - 1.12 0.796 2.25 0.762
FireRedTTS [GLS™24] 25 1.51 0.635 3.82 0.460
CosyVoice 2 [DWC " 24b] 25 1.45 0.748 2.57 0.652
Spark TTS [WIM *25] 50 1.20 0.672 1.98 0.584
VIBEVOICE-1.5B 7.5 | 116 0.744 | 3.04 0.689

Table 2: Results on the SEED test sets.

Token test-clean test-other
Rate | PESQ STOI UTMOS | PESQ STOI UTMOS

- - - 4.056 - - 3.483
600 272 0939 3.04 2,682 0.924 2.657
400 2738 0928 3.433 2595 0.908 2.945
300 2.052 0901 2.307 2.052 0.884 2.088
300 1.931 0.878 3.563 1.737  0.837 3.018
100 1.246 0.771 1.494 1.245 0.751 1.499
75 2373 00914 4.049 2261 0.891 3.431
40 1.703  0.862 3.602 1.662 0.834 3.055

7.5 | 3.068 0828 4181 | 2.848 0.823 3.724

Tokenizer N,

Ground-Truth

Encodec [DCSA22]

DAC [KSL*23]

Encodec [DCSA22]
SpeechTokenizer [ZZ1." 23]
DAC [KSL.*t23]
WavTokenizer [JJW ™ 25]
WavTokenizer [JJW T 25]

Ours (Acoustic)

O S N N . I

Table 3: Objective evaluation of speech tokenizer’s reconstruction quality on the LibriTTS test-clean
and test-other datasets. N, denotes the number of quantizers (VAE for us). Token Rate indicates the
number of tokens/frames generated per second of audio. Higher PESQ, STOI, and UTMOS scores
indicate better performance. Best results are in bold.
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VibeVoice Technical Report: https://arxiv.org/pdf/2508.19205

Model Subjective Objective

Realism Richness Preference Average WER (Whisper) WER (Nemo) SIM
Nari Labs Dia [Nar25] - - - - 11.96 10.79 0.541
Mooncast [JYY 725] - - - - 2.81 3.29 0.562
SesameAILabs-CSM [Ses25] 2.89 +115 3.03 £1.11 2.75 £108 2.89 +1.12 2.66 3.05 0.685
Higgs Audio V2 [Bos25] 295 +113 319 +106 2.83 +116 299 113 5.94 5.97 0.543
Elevenlabs v3 alpha [Ele] 334 +1n1 3.48 +10s 338 +112 3.40 +1.09 2.39 2.47 0.623
Gemini 2.5 pro preview tts [Goo] 3.55 +120  3.78 +1.n1 3.65 +115 3.66 +1.16 1.73 243 -
VIBEVOICE-1.5B 3.59 095  3.59 110 3.44 o9 3.54 +o096 1.11 1.82 0.548
VIBEVOICE-7B 3.71 09z 3.81 +os7 3.75 +094  3.76 +o093 1.29 1.95 0.692

Table 1: Human subjective and objective evaluation results. For all subjective metrics and SIM-O,
higher scores are better. For WER, lower scores are better. Best results are in bold.
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Ming-UniAudio: Speech LLM for Joint Understanding,
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Ming-UniAudio: Multi-Task Benchmark
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Ming-UniAudio: Model Architecture
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Ming-UniAudio: Unified Representation

MingTok-Audio: %%k Tokenizer

- - - /
p— o S w B = 3] 5 5 o
= —>0l—> 22 8§~ > 3§ £ §> —> 2 § E
= £ |8 s £ @ g o @
o w® o o [ o © o
[F) 5] ©

-

. <a N Acoustic b Unified <N

rame ncoder latent Semantic module feature Decoder

(a) The architecture of MingTok-Audio.
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MingTok-Audio: #&4E Tokenizer
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Ming-UniAudio: Model Architecture
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System Seed-zh WER(%) Seed-zh SIM Seed-en WER(%) Seed-en SIM

Seed-TTS Anastassiou et al. (2024b) 1.12 0.80 2.25 0.76
Ming-Omni-Lite Inclusion et al. (2025) 1.69 0.68 4,31 0.51
MingTok-Audio-TTS 1.04 0.75 1.54 0.68

Table 3 Performance of MingTok-Audio on the downstream TTS task.

Datasets Model Performance
Seed-zh WER(%) Seed-zh SIM Seed-en WER(%) Seed-en SIM

Seed-TTS Anastassiou et al. (2024b) 1.12 0.80 2.25 0.76
FireRedTTS Guo et al. (2024) 1.51 0.65 3.82 0.53

Generation FireRedTTS-2 Xie et al. (2025) 1.14 0.736 1.95 0.65
DiTAR Jia et al. (2025) 1.02 0.753 1.69 0.74
F5-TTS Chen et al. (2024) 1.56 0.74 1.83 0.65
CosyVoice 2 Du et al. (2024c) 1.45 0.75 2.57 0.65
CosyVoice 3-1.5B Du et al. (2025) 1.12 0.78 2.21 0.72
MiMo-Audio Xiaomi (2025) 1.96 - 5.37 -
Qwen2.5-Omni-7B g, Xu et al. (2025a) 1.42 0.75 2.33 0.64
Qwen3-Omni-30B-A3B-Instruct Xu et al. (2025b) 1.07 - 1.39 -
Ming-UniAudio 0.95 0.70 1.85 0.58

Table 13 Performance comparison on speech generation benchmark datasets. The best results are in bold.
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Demo: https://xqacmergithub.io/Ming-Unitok-Audio.github.io
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Datasets Model Performance
WER(%) zh | en ACC zh | en SIM zh | en no-edit WER(%) zh | en
Deletion-basic Ming-UniAudi 11.89114.85 100182.22 0.7810.76 11.49124.26
Deletion-full 1ng-tnmAudio 22.92127.60 82.92185 0.8110.74 17.50135.21
WER(%) zh | en ACC zh | en SIM zh | en no-edit WER(%) zh | en
Insertion-basic Ming-UniAudi 3.4216.63 80171.43 0.83310.79 3.52117.70
Insertion-full Ing-UnAudio 3.8917.592 79.31162.31 0.8310.79 4.10118.84
WER(%) zh | en ACC zh | en SIM zh | en no-edit WER(%) zh | en
Substitution-basic Mine-UniAudio 4.5218.99 78.62 159.78 0.8210.78 4.63119.28
Substitution-full & 4.5617.64 76.62 | 65.62 0.8310.77 4.75118.39
WER(%) ACC SIM
Dialect Ming-UniAudio 8.93 0.50 0.66
conversion
WER(%) zh | en SIM zh | en RDE(%) zh | en
Speed Alteration Ming-UniAudio 5.88117.53 0.6610.57 6.3615.92
WER(%) zh | en SIM zh | en
Pitch Alteration Ming-UniAudio 7.45113.37 0.3610.24
WER(%) zh | en SIM zh | en RAE(%) zh | en
Volume Alteration Ming-UniAudio 1.7111.35 0.8610.80 149111.7
WER(%) SIM DNSMOS OVRL
Add Sound GroundTruth 3.68 - 212
Ming-UniAudio 3.59 0.78 2.46
Model Type DNSMOS OVRL  DNSMOS SIG DNSMOS BAK
FullSubNet Hao et al. (2021) 3.26 3.54 4.04
Inter-Subnet Chen et al. (2023) 3.24 3.54 4.00
CDiffuSE Lu et al. (2022) snecialized 1.31 1.89 1.27
DNS Challenge SGMSE Richter et al. (2023) P 3.28 3.59 3.97
8 StoRM Lemercier et al. (2023) 3.23 3.56 3.92
MiMo-Audio Xiaomi (2025) 3.30 3.56 4.10
. . . general
Ming-UniAudio 3.26 3.59 3.97

Table 14 Performance comparison on Ming-Freeform- Audio-Edit. The best results are in bold.
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Datasets

Model

Performance

Understanding
ASR

Kimi-Audio KimiTeam et al. (2025)
Qwen2.5 Omni Xu et al. (2025a)
Qwen2 Audio Chu et al. (2023)
Ming-UniAudio

aishell2-ios LS-clean Hunan Guangyue Chuanyu Shanghai

2.56
2.75
2.92
2.84

1.28 31.93 41.49 6.69 60.64
1.80 29.31 10.39 7.61 32.05
1.60 25.88 7.59 7.77 31.73
1.62 9.80 5.51 5.46 14.65

Table 11 Comparison of ASR performance on various audio benchmark datasets. The best results are in bold.

Datasets Model Performance
Speech-English Dialogue-English  Speech-Mandarin Dialogue-Mandarin
WER INE-WER INE-FNR ~ WER INE-WER INE-FNR ~ WER|NE-WER |INE-FNR ~ WER | NE-WER | NE-FNR
Qwen2-Audio Chu et al. (2023) 11.49127.27135.08 13.99133.02132.92 90.92124.10130.02 7.00122.76126.17
Baichuan-Audio Li et al. (2025a) 7.5215.8714.55 5.66110.0113.64 2.1616.6512.35 296111.4813.94
Understanding Kimi-Audio KimiTeam et al. (2025) 2.9016.6818.01 4.67113.50111.31 1.95111.13115.28 290115.91116.68
Context ASR Baichuan-Omni-1.5 Li et al. (2025c) 8.1617.6916.53 991114.4015.54 2.9818.3914.71 5.00116.8317.84
Wang et al. (2025b) Qwen2.5-Omni-3B Xu et al. (2025a)  3.9917.8019.69 48311436112.85 2.1311055114.11  3.12115.07115.17
Qwen2.5-Omni-7B Xu et al. (2025a)  3.9617.3818.72 532111.8319.24 1.8419.80112.19  2.40114.06113.17
Ming-UniAudio 4.0013.5613.69 5.3418.7312.53 1.5815.9812.40 3.0419.5011.48
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